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We report exact predictions for universal scaling exponents and scaling functions associated with
the distribution of the maximum collective avalanche propagation velocities vm in the mean field
theory of the interface depinning transition. We derive the extreme value distribution P (vm|T )
for the maximum velocities in avalanches of fixed duration T , and verify the results by numerical
simulation near the critical point. We find that the tail of the distribution of maximum velocity for
an arbitrary avalanche duration, vm, scales as P (vm) ∼ v−2

m for large vm. These results account for
the observed power-law distribution of the maximum amplitudes in acoustic emission experiments
of crystal plasticity, and are also broadly applicable to other systems in the mean-field interface
depinning universality class, ranging from magnets to earthquakes.
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Avalanche phenomena have been observed in a wide
variety of disordered systems that exhibit crackling
noise near a depinning transition. Examples include
Barkhausen noise in soft magnetic materials [1, 2], elas-
tic depinning of charge density waves [3, 4], dynamics of
superconductors [5], seismic activity in earthquakes [6],
acoustic emission in mesoscopic crystal plasticity [7],
and fracture propagation [8]. Although these varying
materials/systems have different microscopic details, on
long length scales, the statistical scaling behavior of
avalanches appears to be universal. For example, the
distributions of avalanche sizes in sheared crystals and
in slowly magnetized soft magnets are both captured by
the mean field theory of a slowly driven elastic interface
in a disordered medium [4, 6, 9–12].

Recent experimental studies of slip avalanches in meso-
copic crystal plasticity have reported that the distribu-
tion of the maximum amplitude Am of the acoustic emis-
sion (AE) signal from each avalanche follows a power law
P (Am) ∼ A−µm , where the exponent µ ≈ 2 [7, 13–17].
Since each avalanche contributes with only one maximum
amplitude to the histogram, many events are required to
obtain good statistics for P (Am). Thus the variations in
the experimental values of µ depend on the experimental
statistics. Owing to the proportionality between the AE
amplitude Am and the collective velocity vm of disloca-
tions [14], the distributions P (Am) and P (vm) should be
characterized by the same scaling exponents and scaling
functions. So far, a theoretical prediction for the value
of the exponent µ has been lacking.

In this Letter, we present the first theoretical calcula-
tion of the maximum velocity distribution, establishing a
connection to the known classes of extreme value statis-
tics of correlated variables. In particular, we derive the
distribution of maximum velocities P (vm) from a mean
field interface depinning model. We first show that the
probability distribution function (PDF) of the maximum
velocity for avalanches of fixed duration T follows a uni-

versal scaling form P (vm|T ) = (2vmT )−1/2F (
√

2vm/T ),
with a scaling function F (x) that can be derived exactly
by a mapping to an equivalent problem of random excur-
sions of Brownian motion in a logarithmic potential. Al-
though a general theory of extremal statistics for strongly
correlated variables is not known, much progress has been
made already for several classes of power-law correlated
noise with an 1/ωα (where ω is the frequency) power
spectrum. Brownian noise corresponds to the particular
case where α = 2 [18, 19]. The extreme value statistics of
power-law correlated noise typically have a robust scal-
ing form, but the scaling function depends on boundary
conditions, the value from which the maximum is mea-
sured, as well as other constraints on the time evolution.
For example, different scaling functions are obtained for
the maximum heights of periodic Gaussian interfaces: if
the maximum is measured relative to the spatially aver-
aged height, the corresponding EVS is determined by the
so-called Airy distribution function [18, 20–22], whereas
measuring the maximum relative to the boundary value
leads to the Rayleigh distribution [19, 23]. Here we
demonstrate that our problem of maximum heights of
amplitudes of mean field avalanches is equivalent to a re-
lated problem whose exact solution obeys the same scal-
ing form with a distinct function. Finally, we show that
the overall distribution scales like P (vm) ∼ v−2m by inte-
grating P (vm|T ) against the duration PDF F (T ). The
results of this study are expected to be broadly applicable
to plasticity, earthquakes, Barkhausen noise in soft mag-
nets and many other systems in the mean field interface
depinning universality class.

Our starting point is a zero-dimensional model of a
slowly driven elastic interface in a disordered medium,
also known as the Alessandro-Beatrice-Bertotti-Montorsi
(ABBM) model [24], corresponding to the dynamics of a
particle pulled by an elastic spring and an external field
through a random force landscape. The position of the
particle u(t) corresponds to the center-of-mass displace-
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ment of the interface u(t) = L−d
∫
ddx u(x, t), given the

local displacement u(x, t) at position x along the inter-
face length L and time t for an interface of dimension d
embedded in a (d+ 1)-dimensional space. In the ABBM
model, the evolution of the particle velocity v = du/dt is
obtained by a time-differentiation of the mean field equa-
tion of motion of the interface and given as [10, 24, 25]

dv

dt
= −kv + c+

√
vξ(t), (1)

where c is the constant drift velocity, k is the elastic
coupling constant and ξ(t) is Gaussian white noise with
autocorrelation 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′) where D is a
constant measure of disorder. In numerous studies, this
model has been shown to reproduce well the universal
scaling laws for the size and duration distributions near
quasi-static depinning for systems with long-range inter-
actions [1, 10, 24–26]. It is relevant for the calculations
below to recall the power law decay of the distribution
of avalanche durations FT (T ) ≈ T−(2−c/D)fT

(
T
T∗

)
, with

a rate-dependent exponent [1, 24, 25], and such that, for
T � T ∗ and c→ 0, the distribution of durations follows
the mean field scaling law FT (T ) ≈ T−2. The exponen-
tial scaling function fT (T/T ∗) and the cutoff T ∗(k) to
the scale invariance can be computed analytically in the
limit of c = 0 [25, 27]. The probability distribution for
the velocity follows the Fokker-Planck equation

∂tP (v, t) = ∂v ((kv − c)P (v, t)) +D∂2v (vP (v, t)) (2)

which has a steady state solution given by

P (v) = v−1+c̃
k̃c̃

Γ(c̃)
e−k̃v, (3)

where Γ(z) is the Gamma function, c̃ = c/D and k̃ =
k/D [1, 24, 25, 27]. The power-law exponent depends
linearly on the driving rate c, such that in the adiabatic
limit c → 0, the distribution approaches the well-known
v−1 scaling, which has been verified by experiments on
the dynamics of domain walls in ferromagnets [28].

Maximum velocity distribution for avalanches of fixed
duration:- By a change of variables to x = 2

√
v,

Eq. (1) transforms to an additive-noise Langevin equa-
tion dx/dt = −kx/2 + (2c − D)/x + ξ(t). The addi-
tional 1/x term comes from the Ito interpretation of the
multiplicative noise in Eq. (1). This choice yields the
correct Eq. (2). Thus, in the adiabatic limit, near de-
pinning, where c → 0 and k → 0, the velocity evolution
can be mapped onto a one-dimensional (1D) Brownian
motion in a logarithmic potential. An avalanche of dura-
tion T corresponds to an excursion, i.e. a path x(t) with
x(0) = x(T ) = 0 and x(t) > 0 for 0 < t < T . The ex-
treme displacement distribution for Brownian excursions
can be derived using the path integral formalism found
in Refs. [21, 23]. We adapt this method to our problem,

0.5 1 1.5 2 2.5 3 3.5 4
10 4

10 3

10 2

10 1

100

101

(2Vm/(DT))1/2

P(
V

m
|T

)*
(2

V
m

D
T)

1/
2

 

 

T=1000
T=1500
T=2000
F(x)

0 1000 2000 3000
0

1

2

3 x 10 3

V
m

P(
V

m
)

(a)

100 102 104 10610 1

100

101

102

103

104

105

106

107

Avalanche Duration

A
ve

ra
ge

 M
ax

im
um

 V
el

oc
ity

 

 

<Vm|T>

  DT

(b)

FIG. 1. (Color online) (a) Data collapse of the PDF P (vm|T )
from numerical integration of Eq. (1) in the Ito interpretation
with parameter values k = c = 0 and D = 1/2. Large du-
rations (T ∼ 1000) are required to obtain the scaling regime
where Eq. (7) holds. The collapse fits very well with the an-
alytically determined F (x), which is represented by the solid
line. The inset figure shows the P (vm|T )’s for different dura-
tions before the rescaling. In panel (b), we show 〈vm|T 〉 as a
function of T , with the solid line representing the analytical
solution from Eq. (8) with D = 1/2.

and determine the cumulative distribution CRW (xm|T )
of the maximum displacement during excursions for a
Brownian motion in a logarithmic trap. The cumulative
distribution can be defined as CRW (xm|T ) =

lim
ε→0

∫ x(T )=ε

x(0)=ε
Dxe−

∫ T
0
dtLE

∏
t Θ(x(t))Θ(xm − x(t))∫ x(T )=ε

x(0)=ε
Dxe−

∫ T
0
dtLE

∏
t Θ(x(t))

(4)

where the Lagrangian is given by LE = 1
4D (ẋ + 1

x )2.
The theta function products in the numerator indicate
that only paths that stay positive-valued between t = 0
and t = T and have a maximum distance from the ori-
gin not greater than xm are counted. The denomina-
tor is a normalization factor, counting any excursion of
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duration T without regard to its maximum value. The
Fokker-Planck equation (Eq. (2)) with c = k = 0 in
terms of the variable x is Bessel’s equation of order 1,
thus the path integrals from Eq. (4) can be written as
the matrix elements 〈ε| exp(−ĤT )|ε〉 of the Hamiltonian
Ĥ = −∂2x− ∂x/x+ 1/x2 with appropriate boundary con-
ditions, and then expanded in terms of Bessel functions
(details are presented in [29]). From CRW (xm|T ), the
PDF P (xm|T ) = ∂xmC(xm|T ) is determined. We find
that the P (xm|T ) has the scaling form

P (xm|T ) =
1√

2DT
F

(
xm√
2DT

)
, (5)

with scaling function

F (x) =
1

x5

∞∑
n=1

λ2n
(J2(λn))2

[
λ2n
x2
− 4

]
e−

λ2n
2x2 , (6)

where λn is the n’th zero of the Bessel function J1(x).
From Eq. (5), it also follows that the average maxi-
mum displacement scales with duration as T 1/2, like the
average maximum relative heights of fluctuating inter-
faces [20, 21, 23]. Returning to the physical variable
v, we find that the maximum velocity distribution in
avalanches of fixed duration T has the scaling form

P (vm|T ) =
1√

2vmDT
F

(√
2vm
DT

)
. (7)

The average maximum velocity dependence on avalanche
duration T can be obtained as the first moment of the
conditional distribution

〈vm|T 〉 =

∫ ∞
0

dvmvmP (vm|T ) = DT, (8)

where we used the fact that
∫
dxx2F (x) = 2.

Using the same method, we also determine that the
PDF of the instantaneous velocity v at time t in an
avalanche of duration T is given by

P (v, t|T ) = v

(
T

Dt(T − t)

)2

e−vT/(Dt(T−t)). (9)

The first moment of P (v, t|T ) gives 〈v(t)|T 〉 = 2Dt(T −
t)/T, which is the parabolic average avalanche shape dis-
cussed in [2, 30, 31].

We have verified Eqs. (7) and (8) numerically by inte-
grating Eq (1) (see Fig (1)). Large durations (T ∼ 1000)
must be explored for the scaling function to converge to
the one predicted by our continuum derivation, but the
results are in accord with predictions. We obtained im-
proved statistical results for data collapse to the same
scaling function using the computationally-efficient dis-
crete velocity shell model [6, 31], which obtains its scal-
ing regime at smaller durations. These results will be
reported elsewhere [29].
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FIG. 2. (Color online) In panel (a), the PDF P (vm) obtained
from numerical integration of Eq. (1) is shown for several val-
ues of c̃, all with k = 10−4 and D = 1/2. The PDFs are
offset vertically so they can be clearly distinguished. Above
each curve, a guideline is drawn indicating the power law an-
alytically predicted from Eq. (11). In panel (b), we show the
instantaneous velocity PDF P (v) for several values of c̃. The
solid lines represent the functional form predicted by Eq. (3).
Again, the PDFs are offset for visibility.

Although our analytical calculation was performed ex-
actly only for k = c = 0, the scaling form in Eq. (7) gives
a good collapse of simulation data away from criticality
as well, even when including durations T ∼ T ∗(k) [29].
Therefore the dependence of the scaling form on k is likely
to be weak. Since the driving rate parameter c̃ is dimen-
sionless, one might anticipate that nonzero values of the
driving rate c modify the scaling function, but not the
scaling form. Indeed, the exact form of the modification
can be calculated analytically with a slight generalization
of the above calculation [29].

Maximum and instantaneous velocity statistics:- We now
investigate the maximum velocity distribution integrated
over all durations. This distribution is equivalent to the



4

P (A) of the maximum AE amplitude, A, deduced from
the time series in AE experiments on crystal plasticity.
From Eq. (9), we can determine the PDF of the maxi-
mum avalanche velocity P (vm) by integrating P (vm|T )
over avalanche durations T weighted by their distribution
FT (T ) ∼ T−2+c̃, for T � T ∗. Our numerics indicate that
P (vm|T ) satisfies Eq. (7) at least for durations T < T ∗.
Thus, the distribution of P (vm) is

P (vm) ∼
∫ T∗

0

dT

T 2−c̃P (vm|T ), (10)

and near depinning, where T ∗ →∞, we have

P (vm) ∼ v−2+c̃m . (11)

Similarly, we obtain the PDF P (v) for the instantaneous
velocity v at an arbitrary time by integrating P (v, t|T )
over the time spent in an avalanche of duration T and
then over the distribution of durations, giving

P (v) =

∫ T∗

0

dT

∫ T

0

dtP (v, t|T )F (T ) (12)

∼ v
∫ T∗

0

dT

T 3−c̃G(v/DT ) (13)

where G(x) =
∫ 1

0
du(u(1 − u))−2 exp(−x(u(1 − u))−1).

G(x) ∼ x−1 for x � 1 and decays exponentially for
x � 1, so in the limit T ∗ → ∞, we recover the P (v) ∼
v−1+c̃ scaling predicted by the steady state equation for
c̃ < 1 [10, 24, 25, 27]. In Fig. (2), we show numerically
calculated PDFs P (vm) and P (v) for various values of c.
The distributions agree with the predictions of Eqs. (11)
and (3).

In addition to the exponents, it would be interesting
to measure the predicted scaling form of the P (vm|T )
over fixed durations from AE experiments, in the cor-
responding regime where the distribution of maximum
amplitudes P (Am) ∼ A−2m was observed [7, 13–17]. The
distribution P (vm|T ) was calculated exactly only at the
depinning transition with k = c = 0, but numerical evi-
dence strongly suggests that an indistinguishable scaling
form occurs away from the transition, whose dependence
on the elastic coupling constant and the driving rate still
needs to be studied in more detail. Finally, what happens
beyond mean field theory remains an open question, de-
spite the apparently good agreement of our calculations
with available experimental data. For instance, it is un-
clear to us whether the exponent µ in P (vm) = v−µm is
expressible in terms of the other avalanche exponents (τ ,
σνz, etc.) or if it is independent.
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