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Condensation dynamics in a quantum-quenched Bose gas
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By quenching the strength of interactions in a partially condensed Bose gas we create a “super-saturated”
vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the number of condensed
atoms (N0) grows even though the temperature (T ) rises and the total atom number decays. We show that
the non-equilibrium evolution of the system is isoenergetic and for small initial N0 observe a clear separation
between T andN0 dynamics, thus explicitly demonstrating the theoretically expected “two-step” picture of con-
densate growth. For increasing initial N0 values we observe a crossover to classical relaxation dynamics. The
size of the observed quench-induced effects can be explained using a simple equation of state for an interacting
harmonically-trapped atomic gas.

PACS numbers: 03.75.Kk, 67.85.De, 67.85.-d

Non-equilibrium dynamics of interacting quantum systems
are generally far less understood than the corresponding equi-
librium many-body states [1]. Of particular interest are many-
body dynamics of both the order parameter and the excita-
tions in a system close to a phase transition. From a the-
oretical point of view, a clean and well defined way to in-
duce and study non-equilibrium quantum dynamics is a rapid
“quantum quench” [2] of a single Hamiltonian parameter. Ul-
tracold atomic gases are very well suited for such quantum
quench experiments. In addition to the possibility to dynam-
ically vary microscopic Hamiltonian parameters, they feature
near-perfect isolation from the environment and characteris-
tic many-body timescales (ranging from milliseconds to sec-
onds) that are experimentally resolvable and allow real-time
non-equilibrium studies.

In this Letter, we introduce a quantum quench of the inter-
action strength in an atomic Bose gas as a tool to study the
dynamics of Bose-Einstein condensation [3–15]. Earlier ex-
periments highlighted the importance of bosonic stimulation
in condensate formation [10], but could not quantitatively ad-
dress the theoretically debated interplay of thermal energy re-
distribution and condensate development [3–9]. The use of a
quantum quench of the interaction strength allows us to study
these two processes in parallel. The quench induces a growth
of the condensed atom number in a degenerate gas without
any removal of thermal energy; we explain this effect with
a simple theoretical model and experimentally study its real-
time dynamics. We explicitly show that the post-quench non-
equilibrium evolution of the system is isoenergetic, and di-
rectly reveal the theoretically postulated “two-step” picture of
condensation [4–7]. As expected, close to the critical point
the growth of the condensed atom number lags behind the en-
ergy redistribution in the thermal component of the gas. Mov-
ing away from the critical point, we also observe a crossover
to effectively one-step condensation dynamics governed by a
classical relaxation process.

In an ideal Bose gas the number of condensed atoms, N0,
depends only on the total atom numberN and the temperature
T . In a partially condensed cloud at a given T the number of
atoms in the thermal component,N ′, is saturated at the critical
value for condensation, Nc(T ), and we have N0 = N − Nc.

In experiments on harmonically trapped atomic gases the in-
teractions, characterized by the s-wave scattering length a,
change this picture in two ways (see Fig. 1). First, they in-
duce a shift of the critical value Nc(a, T ), which was accu-
rately measured in [16]. Second, the thermal component is
not saturated - the presence of the condensate allows N ′ to
grow above Nc [17]. Taking these effects into account, near
the critical point we can write the equation of state for an in-
teracting atomic gas in thermal equilibrium [18]:

N = Nc + S0N
2/5
0 +N0 . (1)

Here S0N
2/5
0 is the additional number of atoms accommo-

dated in the thermal component due to non-saturation ef-
fects, i.e., N ′ = Nc + S0N

2/5
0 . The non-saturation coeffi-

cient S0 ∝ a2/5T 2 can be calculated using mean-field theory
[17, 18]. (In our experiments S0 ∼ 103.)

As illustrated in Fig. 1, the fact that the equilibrium num-
ber of condensed atoms (at a fixed N and T ) depends on the
strength of interactions opens the possibility to use a quantum
quench of the scattering length to induce non-equilibrium N0

dynamics. Here we plot the solutions of Eq. (1) for a fixed T
and different scattering lengths a, where a0 is the Bohr radius.
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FIG. 1: (Color online) Inducing non-equilibrium dynamics by a
quantum quench of the interaction strength. The equilibrium con-
densed atom number N0, calculated according to Eq. (1), is plotted
versus the total atom numberN for a fixed temperature T = 200 nK,
our trapping parameters, and different scattering lengths a. The red
arrow indicates the direction of the quench. The three absorption
images of atomic clouds released from the trap show the growth
of the condensate (appearing in red) over ≈ 1 s following an
a = 275→ 62 a0 quench.
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If the system is prepared in equilibrium at a high scattering
length and then a is quenched to a lower value the gas be-
comes super-saturated, having too large N ′ and too small N0.
Consequently N0 must grow even without any active cooling
of the gas. Compared to the classical quench of the thermal
energy [10–14], the quantum quench of a has the advantage
that it does not directly affect N and the initial thermal oc-
cupations of the single-particle excited states. This allows us
to study in parallel the induced non-equilibrium evolution of
both the condensate and the quasi-thermal energy distribution
in the system.

For our experiments we use an optically trapped cloud of
39K atoms in the |F,mF 〉 = |1, 1〉 hyperfine ground state
[19], in which a can be tuned via a Feshbach resonance cen-
tred at 402.5 G [20]. The geometric mean of the harmonic
trapping frequencies in our nearly isotropic trap is ω̄/2π ≈
75 Hz, the temperature of our clouds is T ≈ 200 nK, and the
total atom number N ≈ (3− 4)× 105.

We initially prepare an equilibrium cloud just below the
condensation temperature at a scattering length ai = 275 a0
and then rapidly quench the scattering length to a lower final
value, af , by changing the externally applied magnetic field
over τq = 10 ms. After the quench we follow the evolution
of the system for times up to t = 10 s, extracting N0, N and
T from absorption images taken after 18 ms of time-of-flight
(TOF) expansion from the trap [21]. An example of such a
data series, with af = 62 a0 and an initial condensate atom
number N i

0 ≈ 4 × 103, is shown in Fig. 2. We collected
a total of 20 such experimental series, each with a different
combination of af in the range 52−97 a0 andN i

0 in the range
(1− 40)× 103.

The quench time τq and the af values simultaneously sat-
isfy several requirements:

(i) Even for fixed N0 the spatial size of the condensate de-
pends on a. Our τq is sufficiently long compared to the trap
time (ω̄τq ≈ 5) to allow adiabatic adjustment of the conden-
sate shape at the initial N0 [22].

(ii) At the same time the quench must be diabatic with re-
spect to the exchange of particles between the thermal cloud
and the condensate, so we choose af values small enough for
the elastic collision rate γel [23] to be much smaller than 1/τq.

(iii) The af values are large enough for the system to
converge towards new equilibrium at long times, rather than
forever remaining in an intrinsically non-equilibrium state
[16, 18].

As shown in Fig. 2, the number of condensed atoms N0

clearly grows following the quench, before eventually decay-
ing at much longer times due to the mundane reasons of slow
N decay and a background heating rate of about 1 nK/s [24].
Since at short times N0 grows while N decays and T rises,
this increase in the number of condensed atoms is unambigu-
ously an interaction effect. Interestingly, the temperature also
shows a fast initial rise which is clearly associated with the
interaction quench.

In order to quantitatively study the non-equilibrium effects
that occur on short timescales (<∼ 1 s) after the quench, we

0 2 4 6 8 1 0
2 0 0

2 1 0

2 2 0

0
2
4
6
8

1 0

0
1 0 0
2 0 0
3 0 0

0 5 1 0
0

2 0

4 0

T i

T (
nK

)

t i m e  ( s )

T f

N f
0

N 0 (1
03 )

N i
0

N (
10

3 )

( N f
0 ) 2 / 5

N2/5 0

t i m e  ( s )

FIG. 2: (Color online) Non-equilibrium dynamics following an in-
teraction quench from ai = 275 a0 to af = 62 a0. The condensed
atom number N0, total atom number N , and temperature T are plot-
ted versus the time t after the quench. Each data point is an average
of 3 - 7 experimental shots and the error bars are statistical. N0 first
grows towards the new equilibrium and then slowly decays due to the
slowN decay and a small background heating rate of≈ 1 nK/s. The
N decay has a characteristic timescale of ∼ 100 s and is essentially
linear over 10 s. In addition to the constant background heating rate,
the temperature shows a fast initial rise induced by the quench. The
inset shows the evolution of N2/5

0 , which decays linearly at long t.
The dashed red lines show fits to the long-t data, used to extract Nf

0

and T f (see text).

need to eliminate from our analysis the long-term (quasi-
static) drifts of N and T . Specifically, we need to experi-
mentally extract the “target” final values Nf

0 and T f that the
system would tend to in absence of the slow background heat-
ing and atom number decay (see dashed red lines in Fig. 2).
The target temperature T f is simply determined by subtract-
ing the constant background heating rate, i.e. fitting a constant
slope to the long-time data. The extraction ofNf

0 is a bit more
subtle. A simple linear fit of N0 versus t (at long times) is not
completely correct and generally underestimates the time at
which the BEC dies. For example, in Fig. 2 such a fit would
predict the condensate to die at ≈ 7.5 s, whereas it unambigu-
ously survives for t > 10 s. At our level of measurement pre-
cision [16], this corresponds to a 3σ error in the location of
the critical point. To correctly model the long-time behaviour,
we note that the slow linear decay of N and rise of T both
to leading order correspond to a linear decrease of N − Nc

with time. Further, for small condensates, the S0N
2/5
0 term in

Eq. (1) is significantly larger than N0. Hence, at long times
N

2/5
0 decays linearly, allowing us to extract (Nf

0 )2/5 by linear
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FIG. 3: (Color online) Isoenergetic non-equilibrium evolution. (a)
For a quench from T i = 200 nK, and ai = 275 a0 to af = 62 a0,
the three lines show the calculated N i

0 (bottom, black), Nf
0 in the

isoenergetic picture (middle, red) and Nf
0 in the isothermal picture

(top, blue). (b) Measured ∆N0, for 20 experimental series with var-
ious N i

0 and af values, is plotted versus the predictions of the isoen-
ergetic model. The liner fit to the data (solid blue line) gives a slope
of 0.9± 0.1 and an offset of (3± 1)× 103.

extrapolation to t = 0.
We qualitatively anticipated the quench-induced growth of

N0 by solving Eq. (1) under the constraint of fixed T (see
Fig. 1). However we can also understand why the quench
must lead to an increase in the temperature of the cloud. For
our experimental parameters the average energy of thermal
atoms is approximately 3kBT ≈ h × 13 kHz, while the en-
ergy of the condensed atoms (including kinetic, potential, and
interaction energy at af ) is less than h × 1 kHz. Therefore,
during the non-equilibrium evolution of the system after the
quench, the atoms moving from the thermal cloud into the
condensate take with them much less than “their share” of en-
ergy. Hence an isothermal non-equilibrium evolution would
not conserve energy. To explicitly test whether the evolution
is isoenergetic, we make a simple prediction that relates the
changes ∆T = T f − T i and ∆N0 = Nf

0 − N i
0 under the

constraint of constant energy. In analogy with the standard
models of evaporative cooling [25, 26], we get that to leading
order (for small condensed fractions) the small fractional in-
crease in T should be equal to the increase in the condensed
fraction:

∆T

T
≈ ∆N0

N
. (2)

For our 20 data series with different N i
0 and af values we

observe ∆T/T i = (1.2 ± 0.3)∆N0/N , in good agreement
with the prediction of Eq. (2). We can now also predict ∆N0

for any N i
0 and af , by numerically solving Eq. (1) under the

constraint set by Eq. (2) (see Fig. 3). As shown in Fig. 3(b), the
measured ∆N0 follows our theoretical predictions, although
we systematically observe slightly smaller N0 increase than
predicted [27].

In Fig. 4 we compare and contrast the evolution of T and
N0 during the system’s approach to the new equilibrium, for
the same 20 data series shown in Fig. 3(b).

The temperature exhibits classical relaxation dynamics, i.e.,
T exponentially approaches T f on a timescale τT that de-
pends only on γel. As shown in Fig. 4(a), we find that τT cor-
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FIG. 4: (Color online) Condensation dynamics. (a) The T dynamics
agree with the classical relaxation picture; the linear fit (red line)
gives a relaxation time τT = (2.6 ± 0.1)/γel. (b) In the bosonic
stimulation picture R0 ∝ ΓB (see text). The linear fit (solid blue
line) to low-R0 data gives R(B)

0 = (9 ± 1)ΓB. (c) One- versus
two-step condensation. Solid red line shows the one-step classical
relaxation prediction, R(cl)

0 . The blue shaded area, corresponding to
the blue line in (b), shows the two-step bosonic stimulation result,
R

(B)
0 . For increasing R0 we observe a crossover between the two

types of dynamics. The inset shows the same data plotted on a linear
scale.

responds to 2.6 collisions per particle (see also, e.g., [29, 30]).
We observe no dependence of τT on N i

0.
The N0 dynamics are more intriguing. For N0 to grow, two

conceptually distinct steps must take place: (1) the redistribu-
tion of the kinetic energy within the gas (seen in the T dynam-
ics) and (2) the merging of the accumulated low-energy atoms
into the condensate. In this two-step picture, (only) the sec-
ond step depends on N i

0 due to bosonic stimulation, which
enhances scattering into an already highly occupied state.
Specifically, the initial N0 growth rate, R0 = Ṅ0(t = 0),
should be proportional to ΓB = N i

0 γel ∆µ/(kBT ), where
∆µ ∼ a

2/5
f ∆(N

2/5
0 ) is the difference between the initial and

final chemical potentials [8–10].
However, the two-step picture is experimentally relevant

only if the second step is the slower, “rate limiting process”,
so that N0 growth lags behind the energy redistribution. If the
first step is the rate limiting process, and the particles scatter-
ing to low energies essentially immediately join the conden-
sate, then we effectively have a one-step process, described
by the classical relaxation model. In that case we expect R0

to be simply given by R(cl)
0 = ∆N0/τT ≈ ∆N0 γel/2.6. We

qualitatively expect a crossover from the bosonic stimulation
(two-step) to the classical relaxation (one-step) behaviour as
we move away from the critical point by increasing N i

0. In
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essence, R0 should always reflect the slower of the two pro-
cesses.

In Fig. 4(b) we plot R0 versus ΓB [31]. The low R0 data
shows the expected proportionality and the linear fit (solid
blue line) givesR(B)

0 = (9±1)ΓB. For large ΓB values we see
a systematic downwards deviation from this fit. This is what
is expected once R(B)

0 exceeds the rate at which the classical
relaxation of the thermal component feeds atoms into the low-
energy states. In this regime the experimentally observed R0

should be lower than R(B)
0 and given by R(cl)

0 .
In Fig. 4(c) we directly compare the two-step and one-step

pictures, and show the crossover between the two types of be-
haviour. Here we re-plot the R0 data versus ∆N0 γel, so that
the one-step classical result, R(cl)

0 , corresponds to the straight
line shown in red. The bosonic stimulation result, R(B)

0 , is
now not a universal curve, since it depends on a different set
of parameters; the blue line in Fig. 4(b) here maps onto the
blue shaded area. We now explicitly see that the small R0

data lies systematically below the classical relaxation predic-
tion, as expected in the two-step picture. However we also see
that the data is consistent with both theories in the crossover
region where R(B)

0 ≈ R
(cl)
0 , and eventually agrees better with

R
(cl)
0 for the largest R0 values.
In conclusion, we have used a quantum quench of the in-

teraction strength to create a super-saturated non-equilibrium
Bose gas and study its dynamics. We have shown that the
non-equilibrium evolution of the system is isoenergetic and
that the quench-induced changes in the condensed fraction
and temperature of the gas can be accounted for using a simple
equation of state for an interacting gas in thermal equilibrium.
Moreover, for the first time we directly compare and con-
trast the energy-distribution and condensation dynamics, and
clearly resolve the two theoretically expected steps in the con-
densation process. Here we focused on the case of small but
non-zero initial condensates; with this case understood, in the
future it should be possible to use a similar quantum quench
to drive the system through the critical point. In that case, in
absence of the initial condensate “seed”, it should be possible
to study the stochastic effects associated with the spontaneous
symmetry breaking and initial condensate formation.
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