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We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T ), and en-
tropy, S(T ), of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions
recently determined from inelastic neutron scattering measurements and find good agreement with
experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find
that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground
state, with two peaks in C(T ): a Schottky anomaly signalling the paramagnetic to spin ice crossover
followed at lower temperature by a sharp peak accompanying a first order phase transition to the
ordered state. We suggest that the two C(T ) features observed in Yb2Ti2O7 are associated with
the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs.
We anticipate that conventional ground state with exotic quantum dynamics will prove a prevalent
characteristic of many real quantum spin ice materials.

PACS numbers: 74.70.-b,75.10.Jm,75.40.Gb,75.30.Ds

The experimental search for quantum spin liquids
(QSLs), magnetic systems disordered by large quan-
tum fluctuations, has remained unabated for over twenty
years [1]. One direction that is rapidly gathering mo-
mentum is the search for QSLs among materials that are
close relatives to spin ice systems [2], but with additional
quantum fluctuations, or quantum spin ice (QSI) [3, 4].

Spin ice materials, such as R2M2O7 (R=Ho, Dy;
M=Ti, Sn), have magnetic rare-earth atoms (Ho, Dy)
at the vertices of a pyrochlore lattice of corner-sharing
tetrahedra [2, 5]. The combination of large single ion
anisotropy and exchange and dipolar interactions lead to
an exponentially large number of low-energy states char-
acterized by two spins pointing in and two spins pointing
out on each tetrahedron (see Fig. 1a). This energetic
constraint is equivalent to the Bernal-Fowler ice rules
which endow water ice with a residual Pauling entropy
per proton of SP ∼ (kB

2 ) ln(3/2) [6, 7]. The spin ice state,
with also a residual entropy Sp [8], is not thermodynami-
cally distinct from the paramagnetic phase. Yet, because
of the ice-rules, it is a strongly correlated state of matter
– a classical spin liquid of sorts [1, 2].

Several theoretical works have proposed that intro-
ducting quantum fluctuations to such a system, thus
turning it into a QSI [3, 4], may lead to an exotic QSL
phase of matter, one that possibly realizes an emergent
Quantum Electrodynamics (QED) [9–11]. The search for
such a phase is being vigorously pursued in many mate-
rials [3, 4]. Intense experimental [12–19] and theoretical
[14–16, 19–24] interest has recently turned to Yb2Ti2O7

(YbTO), which has been argued to be on the verge of
realizing a QSL originating from QSI physics. In fact,
the combination of (i) an unexplained transition at Tc ∼
0.24 K [12, 25], (ii) the controversial evidence for long-
range order below Tc [26, 27] and (iii) the high sensi-

FIG. 1: (a) Two neighboring tetrahedra with spins in their
two-in/two-out ground state, (b) spinon/antispinon pair, (c)
spinon/antispinon pair separated by a (green) string of mis-
aligned spins in the pyrochlore lattice.

tivity of the low-temperature (T < 300 mK) behavior to
sample preparation conditions [17, 18] are all tantalizing
evidence that YbTO has a fragile and perhaps uncon-
ventional ground state. Thus, explaining YbTO is a key
milestone in the study of QSI in a real materials context.

The possibility that a QED-like framework [9, 10] may
be relevant to describe the physics of the QSI class of ma-
terials [23, 28] is exciting as it could lead to the first un-
equivocal identification of a QSL with its accompanying
emergent deconfined excitations and gauge boson. Un-
fortunately, a quantitative theoretical bridge between ex-
periments and QED-like theory, capable of dealing with
thermodynamic properties of realistic QSI models, is cur-
rently lacking. This is where our work, which employs
the numerical-linked cluster (NLC) method, comes in
[29, 30]. Highly frustrated magnetic quantum systems
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are not amenable to large-scale quantum Monte Carlo
simulations because of the so-called sign problem. While
the density matrix renormalization-group (DMRG) is a
powerful method for 1-dimensional systems, and exact di-
agonalization has proved useful in two-dimensions, these
methods are much less useful in three-dimensions. Using
YbTO as a benchmark, we show below that NLC allows
for a reliable and accurate calculation of thermodynamic
properties of such systems as a function of temperature
in the regime of short-range correlations and over a range
of parameters.
Anisotropic exchange interactions, {Je}, are expected

to drive exotic quantum physics, including QSI, in py-
rochlore oxides [3, 4, 16, 23, 28]. While these have been
argued to be at play in YbTO for some time [14], there
is at present no consensus as per their values [14–16, 19–
21], an issue that stands in the way of making progress
in understanding this system. By calculating the specific
heat, C(T ), in a reliable manner using NLC expansions,
we show that the {Je} values of Ross et al. [16] provide
excellent agreement with experiments, hence validating
their exchange parameters over others [14, 15, 19, 20].
We also find an excellent agreement between the the-

oretical entropy, S(T ), calculated for YbTO parameters,
by going down in T starting from a value of kB ln 2
at T = ∞, and the experimental entropy obtained by
assuming zero entropy at T = 0 and integrating the
C(T )/T data through the sharp peak around 0.24 K.
This agreement does suggest that the experimentally ob-
served sharp peak in YbTO may be consistent with the
model. However, since our numerical results are valid
only at relatively high T , we can not rule out the pos-
sibility that the model may have an entropy that would
only decrease gradually to zero as T goes to zero without
displaying a transition. Such a second peak, and the de-
velopment of long-range order, is also found in our Monte
Carlo simulations of a pertinent effective classical model.
Finally, we use perturbative arguments to show that

despite a conventional ground state, the spin excitations
consist of spinon/antispinon pairs connected by (Dirac-
like [31, 32]) strings of reversed spins, whose confine-
ment length ls diverges in the limit of small quantum
exchanges. We propose that these excitations should ul-
timately form the basis for describing what we expect to
be highly unconventional inelastic neutron spectra [24].
Model & Method – The anisotropic exchange QSI

model is defined by the nearest-neighbor Hamiltonian
[16, 23] on the pyrochlore lattice

HQSI =
∑

<i,j>
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γij is a 4 × 4 complex unimodular matrix, and ζ = −γ∗

[16]. The ẑ quantization axis is along the local [111] direc-

tion, and ± refers to the two orthogonal local directions.
We take λ = 1, except when stated otherwise.

Recently Ross et al. [16] used inelastic neutron scat-
tering data in high magnetic field to deduce the {Je} ex-
change parameters for YbTO: Jzz = 0.166± 0.04, J± =
0.05± 0.01, J±± = 0.05± 0.01, and Jz± = −0.14± 0.01,
all in meV. These parameters have also been determined
through an analysis of the zero-field energy-integrated
paramagnetic neutron scattering [15, 19], but the values
of the {Je} parameters disagree significantly – an issue
that we address in the Supplementary Material [33].

We calculate the thermodynamic properties of the
model (1) using an NLC expansion that includes all con-
tributions from clusters upto four tetrahedra [29, 30, 33].
Such an expansion is numerically exact in two limits. It
is so at high temperature because the contributions from
larger clusters neglected here are O(β6), where β ≡ 1/T .
It is also exact at high-field h at all temperatures, be-
cause corrections are O((J/h)5) at T = 0, with further
exponentially small corrections exp (−ch/T ) at T 6= 0.
The only region where it is not necessarily accurate is
when both T and h are small. A tetrahedron-based NLC
is particularly suited to spin ice related systems. Indeed,
it was recently shown that for classical spin ice models,
just first order NLC is equivalent to the Pauling approx-
imation [6] and gives C(T ) and S(T ) for all T within a
few percent accuracy [34]. Euler extrapolations [35] are
used to further improve the convergence of the calcula-
tions at low T . Details on the NLC expansions can be
found in the Supplementary Material [33].

Figure 2 shows C(T ) calculated with different NLC
orders. By 4th order, there is good convergence to tem-
peratures below the C(T ) peak at ∼ 2 K. Applying Eu-
ler transformations [35] improves the convergence down
to slightly below 1 K. The experimental data from Refs.
[25], shown for comparison, agree well with the NLC re-
sults. This agreement shows that the {Je} parameters
are not substantially changed compared to the high-field
(h = 5 Tesla) values [16]. Using the {Je} of Refs. [15, 19]
gives substantially different C(T ) results [33].

Figure 3 shows S(T ) calculated by NLC, together with
the entropy obtained by integrating the experimental
C(T )/T data of Ref. [25], which we found ideally suited
to perform a comparison with NLC [33]. The entropy
converges to lower temperature slightly better than C(T )
where, with Euler transformations, S(T ) converges down
to about 0.7 K, matching well with the experimental
entropy values over the overlapping temperature range.
Note that the agreement of the NLC S(T ) with the exper-
imental S(T ) is not redundant with the agreement found

above for C(T ) (since S(T2)−S(T1) =
∫ T2

T1

[C(T )
T

]dt). The

experimental S(T ) was obtained assuming a zero resid-
ual entropy at T1 . 100 mK (Sexp(T1) = 0) while the
NLC S(T ) was obtained taking the paramagnetic entropy
SNLC(T2 →∞) to be kB ln(2). Hence, there is no a pri-
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FIG. 2: Heat capacity, C(T ), per mole of Yb for the model
parameters in Ref. [16], in units of the Boltzmann constant
kB, calculated via NLC (up to 4th order NLC together with
Euler extrapolations) are compared with experimental data
for Yb2Ti2O7. The black circles are data from Ref. [25].

ori reason why the two entropies should mesh so well
with each other in the 0.7 K − 4 K temperature range
where strong correlations develop [15, 16]. Thus, the
observed S(T ) agreement between experiment and NLC,
along with that for C(T ) in Fig. 2, provides compelling
evidence that we have at hand with Eq. (1) a quantita-
tive model of YbTO, which may also explain the phase
transition around 0.24 K. This is the main result of this
paper.
Perturbative considerations – We now turn to the per-

turbative regime λ ≪ 1 in Eq. 1 [16, 23]. To second
order in λ, only Jz±, by far the largest quantum term
for YbTO, leads to a degeneracy-lifting classical poten-
tial for different spin-ice configurations. It amounts to
a fluctuation-induced ferromagnetic exchange coupling
J3 ≡ −3λ2J2

z±/Jzz [23] between shortest distance spins
on the same tetrahedral sublattice that share a neighbor
[36]. It leads to the selection of a q = 0 long-range or-
dered ground state in which all tetrahedra have the same
spin configuration making a net magnetic moment along
one of the 〈100〉 cubic directions. To calculate C(T ) and
S(T ) in the perturbative regime at low T , we turn to clas-
sical loop Monte Carlo simulations [37] of the Jzz − J3
model [33]. These reveal a very sharp lower temperature
C(T ) peak accompanying a first order phase transition
to the aforementioned q = 0 state (see Fig. S5 [33]).

Excited states in the perturbative regime: spinons and

strings – A surprise of the perturbative treatment is that,
while the ground state is classical, the spin-flip excita-
tions remain non-trivial and of quantum nature. This is
because, once a spin is flipped in a spin-ice state, creating

FIG. 3: Entropy, S(T ), per mole of Yb, in units kB following
the methods described in the caption of Fig. 2. The black
circles are obtained by integrating the data from Ref. [25]
excluding the nuclear (hyperfine) contribution. The Pauling

entropy SP ∼ kB

2
ln 3

2
is shown as a horizontal line. The inset

shows S(T ) in the perturbative regime with J3/Jzz = −0.001.
A clear plateau at S(T ) ≈ SP is seen, followed at lower T by
a precipitous drop of S(T ) (i.e. latent heat) accompanying
the transition to long range FM order [33].

a spinon/antispinon pair [32], the pair can hop through
Jz± acting through first order degenerate perturbation
theory. Thus, the dispersion bandwidth in the excited
state manifold is O(λJz±), much larger than the disper-
sion within the low-energy manifold of spin ice states,
which is only O(λ2J2

z±/Jzz).

A sketch of a spinon/antispinon pair is shown in Figs.
1b and 1c. Note that only spins inside the tetrahe-
dron “already” containing spinons are flippable in first
order degenerate perturbation theory. Hence, the con-
necting string of misaligned spins can only fluctuate by
higher order processes involving closed loops with alter-
nating in-out spins [24]. Thus the renormalized string
tension per unit length remains finite and of order J3.
One can estimate the typical string length as the length,
ls, at which the cost of the string becomes compara-
ble to the delocalization energy of the spinon/antispinon
pair. The string energy per unit length goes as ∼ J3 ∼
λ2J2

z±/Jzz, whereas the delocalization energy (spinon
bandwidth) goes as λJz±/Jzz. This gives ls scaling as
(1/λ)(Jzz/Jz±), which diverges as (λJz±) → 0. The
spinon/antispinon, with accompanying strings, are a de-
scription of the excitations most useful in the limit of
small λ. As one moves farther from the J±=J±±=Jz±=
0 classical spin ice and into the ferrimagnetic regime, a
conventional magnon description may become more ad-
equate. In the intermediate regime, either description
would require consideration of strong scattering of their
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FIG. 4: Defect density, ρ(T ), calculated using NLC, shown
down to a temperature where 3rd and 4th order Euler trans-
forms agree. Here, quantum exchanges are scaled with respect
to the YbTO {Je} parameters by different values of λ.

quasi-particles (spinons or magnons).

A detailed theory of neutron scattering in this ferri-
magnetic phase is not attempted here, but we anticipate
it to follow the proposal of Ref. [24]. At temperatures
above the transition to the q = 0 long-range ordered
state, the system explores the classical two-in/two-out
spin ice states and should display singularities (pinch
points, PPs) in neutron scattering [38] rounded off by
the finite density of thermally excited spinon/antispinon
defects [32, 38]. While the system has thermally smeared
PPs above the ferrimagnetic transition and no static PPs
well below the transition, it may display some remnant
of PPs in the spin dynamics at higher energies [39] These
interesting issues deserve further attention. We note in
passing that very recent work explores the neutron scat-
tering properties of a minimal QSI model [39].

Beyond the λ ≪ 1 regime – Why is the transition
temperature of YbTO so low? As discussed by Ross et

al. [16], the low T peak in C(T ) is at a temperature
lower than mean-field theory by an order of magnitude.
Comparing C(T ) for the quantum model with different
λ with the corresponding classical model with the per-
turbative J3/Jzz value provides a hint of the reason why
[33]. It shows that in the classical Jzz − J3 model the
long-range order moves steadily up with increasing J3,
even beyond the short-range order C(T ) peak. In con-
trast, the quantum systems with different λ continue to
display a short-range order C(T ) peak and presumably
long-range order only occurs at a much lower T .

Another reason for a reduced Tc comes from con-
sidering the temperature dependence of the defect
(spinon/antispinon) density [32], ρ(T ), as calculated by
NLC (see Fig. 4 and Figs. S3 and S4 [33]). To illus-
trate the point, we show ρ(T ) for several different λ val-

ues. Convergence increases to lower T , with decreasing
λ, as expected. One finds that as T drops below the
hump in C(T ), ρ(T ) displays a plateau-like region, whose
value increases steadily with increasing λ. This indicates
that the states within the spin-ice manifold develop large
spinon/antispinon spectral weight, thus strongly renor-
malizing all low energy scales and, presumably, leading
to a reduced Tc.

Discussion: What constitutes an exchange QSI? – We
suggest that a double-peaked C(T ) with an entropy be-
tween the peaks comparable to SP is the hallmark of an
exchange quantum spin ice (QSI). However, one is un-
likely to find an exact plateau at S(T ) ≈ SP outside the
perturbative (small λ) regime (see Fig. 3) [33]. Evidence
for such a double-peaked structure and quasi-separation
of the energy/temperature scales associated with short
and long-range physics has also been sought in other sys-
tems where quantum spin liquid physics may exist [40].

According to the gauge mean-field theory of Ref. [23],
at low temperature below which short-range spin ice cor-
relations develop, a system may exhibit either conven-
tional ferrimagnetic (FM) order, a Coulombic ferromag-
net (CFM) or a full-blown quantum spin-liquid (QSL),
depending on its exchange parameters. The largest quan-
tum exchange term in YbTO is Jz±, which favors the
FM state and which we believe is the origin of the 0.24
K transition in the best samples [17, 18, 26]. It re-
mains to be seen if there exist materials for which J±,
that favors the QSL [9, 10, 23], is the dominant quan-
tum term. Since Jz± is zero for non-Kramers ions (e.g.
Pr, Tb) [28], and virtual crystal field excitations [3]
in Tb-based pyrochlores are a fundamentally different
pathway from anisotropic superexchange [4] to generate
anisotropic {Je} couplings between effective spins 1/2
[3, 4], the prospect to eventually find a QSI-based QSL
among rare-earth pyrochlores [5] is perhaps promising.

Having demonstrated through NLC expansions that
the anisotropic exchange model of Eq. (1) with the {Je}
values of Ref. [16] describes quantitatively Yb2Ti2O7, we
anticipate that NLC will also be useful to successfully de-
scribe other magnetic pyrochlore oxides and other highly-
frustrated three-dimensional magnetic systems for which
there are essentially no other reliable unbiased quantita-
tive methods available.
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