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We demonstrate that local modulations of magnetic couplings have a profound effect on tem-
perature dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets
in which gapped excitations coexist with acoustic spin waves. In a two-dimensional collinear anti-
ferromagnet with an easy-plane anisotropy, disorder-induced relaxation rate of the gapped mode,
Γimp ≈ Γ0 + A (T lnT )2, greatly exceeds magnon-magnon damping, Γm−m ≈ BT 5, negligible at
low temperatures. We measure the lifetime of gapped magnons in a prototype XY antiferromagnet
BaNi2(PO4)2 using high-resolution neutron-resonance spin-echo technique and find experimental
data in a close accord with the theoretical prediction. Similarly strong effects of disorder in three-
dimensional case and in non-collinear antiferromagnets are discussed.

PACS numbers: 75.10.Jm, 75.40.Gb, 78.70.Nx, 75.50.Ee

Introduction.—Recent development of the neutron-
resonance spin-echo technique has led to dramatic im-
provement of the energy resolution in neutron-scattering
experiments [1–4]. When applied to elementary exci-
tations in magnetic insulators this technique allows to
measure magnon linewidth with the µeV accuracy com-
pared to the meV resolution of a typical triple-axis spec-
trometer. Damping of quasiparticles depends fundamen-
tally on the strength of their interactions with each other
and with impurities, information not accessible directly
by other measurements. Although theoretical studies
of magnon damping in antiferromagnets go back to the
1970s [5, 6], a comprehensive comparison between theory
and experiment is still missing, mainly due to the lack of
experimental data.

The magnon-magnon scattering is traditionally viewed
as the leading source of temperature-dependent magnon
relaxation rates in antiferromagnets [5, 6]. Another com-
mon relaxation mechanism in solids is the lattice dis-
order, which is responsible for a variety of the low-
temperature effects, such as residual resistivity of metals
[7] and finite linewidth of antiferromagnetic resonances
[8]. However, temperature-dependent effects of disorder
are usually neglected because of the higher powers of T
in impurity-induced relaxation rates compared to leading
scattering mechanisms and of the presumed dilute con-
centration and weakness of disorder. The closest analogy
is the resistivity of metals, in which the T = 0 term is due
to lattice imperfections and the temperature dependent
part is due to quasiparticle scattering.

In this work, we demonstrate that scattering on the
spatial modulations of magnetic couplings should com-
pletely dominate the low-temperature relaxation rate of
gapped excitations in a wide class of antiferromagnets.
Such modulations, produced by random lattice distor-
tions, yield scattering potential for propagating magnons
and, at the same time, modify locally their interactions.
For an illustration, we consider an example of the two-
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FIG. 1: (Color online) (a)-(c) Diagrams representing im-
purity, magnon-magnon, and impurity-assisted scattering of
the optical magnon (solid lines). Dotted lines are acoustic
magnons. (d) Schematic energy spectrum of the model (1).

dimensional (2D) easy-plane antiferromagnet with one
acoustic and one gapped excitation branch. In addition
to potential scattering, responsible for a finite damp-
ing Γ0 ∝ ni of optical magnons, see Fig. 1(a), there
exists an impurity-assisted temperature-dependent scat-
tering of gapped magnons on thermally-excited acous-
tic spin-waves, see Fig. 1(c), which yields Γimp(T ) ∝
niT

2 ln2 T . Despite the presumed smallness of impu-
rity concentration ni, at low temperatures this mecha-
nism dominates over the conventional magnon-magnon
scattering, Fig. 1(b), which carries a much higher power
of temperature: Γmm ∝ T 5. We have performed reso-
nant neutron spin-echo measurements with a few µeV
resolution on a high-quality sample of BaNi2(PO4)2, a
prototype 2D planar antiferromagnet [9]. We find that
the theory describes very well the experimental data for
the linewidth of optical magnons. Similar dominance of
the impurity-assisted magnon-magnon scattering should
persist in the 3D antiferromagnets and is even more pro-
nounced in the non-collinear antiferromagnets. We pro-
pose further experimental tests of this mechanism.

Theory.—We begin with the spin Hamiltonian of
a collinear antiferromagnet (AF) with an easy-plane
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anisotropy induced by the single-ion term D > 0:

H =
∑
〈ij〉

Jij Si · Sj +D
∑
i

(Sz)
2
. (1)

Two examples are the nearest-neighbor AFs on square
and honeycomb lattices. The latter model, with the non-
frustrating third-neighbor exchange, is relevant to the
spin-1 antiferromagnet BaNi2(PO4)2 [9] discussed below.

As a consequence of broken XY symmetry, excita-
tion spectrum in the ordered antiferromagnetic state pos-
sesses acoustic (α) and gapped (β) magnon branches:

εαk ≈ c|k| , εβk ≈ ∆ +
k2

2m
, (2)

see Fig. 1(d) for a sketch. Explicit expressions for c, ∆,
and m for BaNi2(PO4)2 are provided in [10].

Defects are present in all crystals. While vacancies and
substitutions may be eliminated in some materials, inho-
mogeneous lattice distortions remain an intrinsic source
of disorder, inducing weak random variations δJ and δD
of microscopic parameters in the spin Hamiltonian (1)
[11]. Both types of randomness have qualitatively the
same effect on magnon lifetimes. For example, local mod-
ification of the single-ion anisotropy δD(Sz` )2 generates
scattering potential for magnons

Himp
2 =

∑
k,k′

ei(k−k
′)R` Ukk′ c†k′ck , (3)

where ck = αk(βk), Ukk′ = δDS (uk+vk)(uk′ +vk′), and
uk, vk are the Bogolyubov transformation parameters.
For optical magnons at k,k′ → 0 the momentum depen-
dence is not important, Ukk′ =O(δD). For bond disorder,
all expressions are the same with a substitution δD→δJ
and an additional phase factor, which depends on bond
orientation and disappears after impurity averaging.

For the gapped magnons with k → 0, scattering am-
plitude in the second Born approximation, Fig. 1(a), av-
eraged over spatial distribution of impurities is [12]

Γimp
k ≈ Γ0 ∝ niU

2

i

mω2
max

∆2
, (4)

where ni is the impurity concentration, U i = O(δJ, δD)
is the averaged impurity potential, and ωmax is the
magnon bandwidth [10]. Thus, in 2D, conventional im-
purity scattering results in a finite zero-temperature re-
laxation rate of the gapped magnons.

At low temperatures, the principal scattering channel
for optical magnons is due to collisions with the ther-
mally excited acoustic spin-waves with cq ∼ T � ∆. All
other processes are either forbidden kinematically or ex-
ponentially suppressed. In this case we can consider only
βα→ βα terms in the magnon-magnon interaction:

Hmm
4 =

∑
k+q=k′+q′

V mm
kq;k′q′β

†
k′α
†
q′αqβk , (5)

Himp
4 =

∑
kq,k′q′

ei∆kR` V imp
k,q;k′,q′β

†
k′α
†
q′αqβk , (6)

where the first and the second row correspond to the con-
ventional and to the impurity-assisted magnon-magnon
scattering, respectively, with ∆k = k+ q− q′− k′. The
latter is of the same origin as the conventional impurity
scattering in (3) since δD and δJ also modify locally in-
teractions among magnons [10]. In the one-loop approx-
imation, (5) and (6) yield the self-energies of Figs. 1(b)
and (c). Applying standard Matsubara technique, relax-
ation rates can be expressed as

Γmm
k = π

∑
qq′

∣∣V mm
kq;k′q′

∣∣2Nq
k′q′ δ(∆ε) , (7)

Γimp,T
k = πni

∑
qq′k′

∣∣∣V̄ imp
kq;k′q′

∣∣∣2Nq
k′q′ δ(∆ε) , (8)

where ∆ε = εk+εq−εq′−εk′ , Nq
k′q′ = nq(1+nq′+nk′)−

nq′nk′ , and nq is the Bose factor.
There are two important differences between Γmm and

Γimp,T in (7) and (8). First, the total momentum is
not conserved for impurity scattering. This relaxes kine-
matic constraints of the 4-magnon scattering processes,
but requires instead integration over the extra indepen-
dent momentum k′. Second and most crucial, interaction
vertices V mm

kq;k′q′ and V imp
kq;k′q′ show very different long-

wavelength behavior as q, q′ → 0. We calculate them
using the approach similar to [5, 6], and find that in the
long-wavelength limit magnon-magnon interaction (5) is
V mm
kq;k′q′ ∝

√
qq′, in accordance with the hydrodynamic

limit [14]. However, for the impurity-assisted scatter-

ing (6), interaction is V imp
kq;k′q′ ∝ 1/

√
qq′. This can be

understood as a consequence of an effective long-range
potential for acoustic magnons produced by the gaped
magnon while in the vicinity of an impurity.

The leading T -dependence of Γmm
k→0 and Γ imp,T

k→0 can
be calculated now using (2) and approximating interac-
tion vertices with their long-wavelength expressions. The
main contribution to the integrals in (7) and (8) is de-
termined by acoustic magnons with q, q′∼T/c. Then, a
straightforward power counting yields

Γmm
k→0 ≈ B

(
T

ωmax

)5

, (9)

where B ∼ ωmax [10]. Thus, the inverse lifetime of an
optical magnon is proportional to T 5 in 2D. A general-
ization to higher dimensions gives Γmm ∝ T 2D+1. The
T 7-law for the relaxation rate of optical magnons in 3D
antiferromagnets was previously predicted in [16]. We
note that for a given model, the effect of magnon-magnon
scattering in (9) can be calculated using microscopic pa-
rameters, thus putting strict bounds on its magnitude.

The same calculation for Γimp,T
k→0 proceeds via the fol-

lowing integral:

Γimp,T
k→0 ≈

niU
2

i

8π2

∫
q

∫
q′
nq (nq′ + 1)

∫ ∞
0

k′ dk′ δ (∆ε) ,(10)
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where
∫
q

=
∫ Λ

0
dq with Λ∼ π/a, ∆ε = cq−cq′−k′2/2m,

and we used the relation between V̄ imp
kq;k′q′ in (6) and Ukk′

in (3). The näıve power counting in (10) already gives
Γimp,T ∝ T 2, while a more careful consideration shows
further enhancement of the scattering as the integrals
formally diverge [logarithmically] in the q → 0 region,
demonstrating an important role of the long-wavelength
magnons in 2D. This divergence is similar to the one in
the problem of finite TN ordering temperature in 2D and
is regularized similarly by introducing low-energy cutoff.
The cutoff is either due to a 3D-crossover as in the case
of some cuprates [15], or a weak in-plane anisotropy that
induces small gap ω0 in the acoustic branch, the case
directly relevant to the current work [9, 13].

Combining (4) and (10) we obtain impurity-induced
relaxation rate of gapped magnons

Γimp ≈ Γ0 +A

(
T

ωmax

)2
[(

ln
T

ω0

)2

+
π2

3

]
, (11)

where both Γ0 and A are proportional to ni and to the av-

erage strength of disorder U
2

i . As a result, the impurity
scattering leads to a relaxation rate that carries a sig-
nificantly lower power of temperature than the magnon-
magnon scattering mechanism. Therefore, despite possi-
ble smallness of the combined impurity concentration and
strength, it should dominate not only the T = 0 lifetime
of the gapped magnon, but also its temperature depen-
dence in the entire low-temperature regime. A qualita-
tive prediction of our consideration is that Γ0 and A in
(10) should be of the same order since both terms are
related to disorder. In addition, for samples of the same
material of different quality, they must scale with the
amount of structural disorder in a correlated way.

In the 3D case, impurity-assisted mechanism (10) gives

Γimp,T
3D ∝ T 9/2, still dominating the 3D magnon-magnon

relaxation rate Γmm
3D ∝ T 7 discussed above.

Experiment.—The experimental part of our work is
devoted to the neutron spin-echo measurements of the
magnon lifetime in BaNi2(PO4)2. This material is a lay-
ered quasi-2D antiferromagnet with a honeycomb lattice
of spin-1 Ni2+ ions and Néel temperature TN ≈ 25 K.
A comprehensive review of the physical properties of
BaNi2(PO4)2 is presented in [9]. Its excitation spectrum
has an optical branch with the gap ∆ ≈ 32 K and an
acoustic mode, as is sketched in Fig. 1(d). The fit of
the magnon dispersion yields the following microscopic
parameters: J1 = 0.38 meV and J3 = 1.52 meV are
exchanges between first- and third-neighbor spins, and
D = 0.32 meV is the single-ion anisotropy. The ther-
modynamic properties of BaNi2(PO4)2 follow the 2D be-
havior down to T . 1K and a small gap in the acoustic
branch, ω0≈2K, due to weak in-plane anisotropy is con-
sistent with the value of the ordering temperature [9].

The spin-echo experiments were performed on the
triple-axis spectrometer IN22 (ILL, Grenoble) by using
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FIG. 2: (Color online) Temperature dependence of the polar-
ization (spin-echo amplitude) of the neutron beam P (T ) for
several representative spin-echo energies.

ZETA neutron resonance spin-echo option [17]. The inci-
dent neutron beam was polarized and the scattered beam
analyzed from (111) reflection of Cu2MnAl Heusler alloy
focusing devices. We used a fixed-kf configuration, with
kf = 2.662 Å−1 or kf = 1.97 Å−1. Different RF-flipper
configurations were used in order to adapt the spin-echo
time (energy) tNSE (εNSE = h/tNSE) to the magnetic ex-
citation lifetimes, typically in the range of 5 ps to 50 ps
(130µeV to 13µeV). As for any spin-echo experiment
[18, 19], the measurement of the neutron polarization
(spin-echo amplitude) after the scattering, P (tNSE), pro-
vides us with a direct access to the correlation function
S(q, tNSE). For a spin-wave excitation described by a
Lorentzian function in energy of half width Γ, one can
show that P (εNSE) = P0(εNSE) exp(−Γ/εNSE), in which
the prefactor P0 depends on the spin-echo resolution.

For our measurements, we have used a 2 cm3 sin-
gle crystal of BaNi2(PO4)2 oriented with the a∗ and c∗

reciprocal axes in the scattering plane. The spin-echo
data were taken at the antiferromagnetic scattering vec-
tor QAF = (1, 0, 0) and the energy transfer ∆E = 3 meV
corresponding to the bottom of the dispersion curve of
the gapped mode [9]. In determining the spin-echo ampli-
tudes, neutron intensities were corrected for the inelastic
background, measured at the scattering vector QAF and
the energy transfer ∆E = 5 meV. Results of the tem-
perature dependence of spin-echo amplitudes for several
representative εNSE’s are shown in Fig. 2. Solid lines are
the fits of the spin-echo amplitudes with P =P0e

−Γ/εNSE

using relaxation rate in the functional form given by (9)
and (11), Γ=Γmm + Γimp, which we discuss next. Using
the full set of P (T, εNSE) data, experimental results for
Γ(T ) are extracted from the fits of ln(P ) vs εNSE at fixed
temperatures. These results are presented in our Fig. 3
together with the theoretical fits.

Comparison.—The relaxation rate approaches con-
stant value of Γ0 ≈ 25 µeV at T → 0, in agreement
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FIG. 3: (Color online) Temperature dependence of the re-
laxation rate Γ of the optical magnon with k ≈ 0 in
BaNi2(PO4)2. Full line is the best theoretical fit including all
contributions with parameters described in the text. Dashed
and dotted lines indicate separate contributions of magnon-
magnon and impurity-assisted magnon-magnon scattering.

with the expectation (4) for the gapped mode in 2D. The
low-T dependence of the relaxation rate is following the
power law much slower than T 5. The quality of the free-
parameter fit of ∆Γ=Γ(T )−Γ0 with just the T 5 law is not
satisfactory for either Γ(T ) or P (T )’s in Figs. 3 and 2, and
the magnitude of ∆Γ also requires an unphysically large
values of the magnon-magnon scattering parameter B in
(9), exceeding theoretical estimates roughly tenfold. On
the other hand, T 2 ln2 T law gives much more satisfac-
tory fits in the low- and intermediate-T regime up to 12
K in both Γ(T ) and P (T ), shown as a separate fit by the
dotted line in Fig. 3. The best fit of Γ(T ), given by solid
line, is the sum of the magnon-magnon and impurity-
scattering effects from (9) and (11), with the magnon-
magnon and impurity-assisted parameters B = 15 meV
and A= 90 µeV, respectively. The same Γ(T ) is used in
all three curves of P (T ) in Fig. 2, the original data from
which experimental Γ(T ) is extracted. Magnon band-
width ωmax = 64 K and the low-energy cutoff ω0 = 2 K,
equal to the gap in the acoustic branch, were used.

Two remarks are in order concerning the role of
magnon-magnon relaxation rate used in Fig. 3. First, fits
of Γ(T ) in Fig. 3 also include contribution from scattering
off the thermally excited optical magnons, which is given
by Γrr = C

(
T
∆

)
e−∆/T [10]. Its contribution is roughly

equal to that of the T 5-term (9) at T =16K (=∆/2), but
diminishes faster at lower T . In the fit of Γ(T ) we use
the value of C = 260 µeV, about three times the theory
estimate: Cth≈70 µeV. Second, the theoretical estimate
of magnon-magnon interaction parameter in T 5 law (9) is
Bth≈6 meV, again factor 2.5 smaller than the one used
in the fit (B=15 meV). Altogether, the magnon-magnon
contribution to Γ(T ), shown by the dashed line and the
corresponding color shading in Fig. 3, is likely a generous

overestimate of its actual role in the relaxation.
Still, the contribution of the impurity-assisted mech-

anism in Γ(T ) is very strongly pronounced and is not
explicable by the conventional scattering mechanisms.
For example, at 12K the impurity scattering accounts for
at least 2/3 of the temperature-dependent part of Γ(T ).
The parameter of the impurity-assisted term in (11) used
in the fit is A= 90µeV, which is of the same order with
the constant impurity term Γ0, meeting our expectations
outlined above. This is, again, the strong argument that
both the constant and the T -dependent terms in the re-
laxation rate must have the same origin, giving further
support to the consistency of our explanation of the data.

The values of A and Γ0 cannot be determined theo-
retically as the impurity concentration and strength are,
generally, unknown. However, another consistency check
is possible: the ratio of Γ0 to a characteristic energy scale
of the problem, ωmax, should give, according to (4), an
estimate of the cumulative measure of disorder concentra-
tion and its strength: nimp(δD/D)2≈Γ0/ωmax≈5 ·10−3.
This translates into a reasonable estimate of the disorder
and its strength in BaNi2(PO4)2: modulation of mag-
netic couplings is equivalent to half of a percent of sites
having δD (δJ) of order D (J). The amount of struc-
tural distortion in BaNi2(PO4)2 [20] is consistent with
the magnitude of such variations of magnetic couplings,
given the strong spin-lattice coupling in this material.
Other systems.—We propose that similar, and even

stronger effects of disorder in the relaxation rate must
be present in the 2D noncollinear antiferromagnets, in
which magnon-magnon interactions acquire the so-called
cubic interaction terms [21], absent in the collinear anti-
ferromagnets considered above. The self-energies associ-
ated with such interaction are the same as in Figs. 1(b)
and (c), but with two intermediate lines instead of three.
With the long-wavelength behavior of the impurity in-
teraction to follow δV3(k,q)∝1/

√
q, as in the considered

case, a qualitative consideration similar to (10) leads to:

Γimp,T
k→0 ≈ A3

(
T

ωmax

)
ln
T

ω0
, (12)

where A3 ∝ nimp(δD/D)2, an even lower power of T .
Since the canting of spins can be induced by external
field, we propose an experimental investigation of the
effect of such field on the relaxation rate. For the 3D
noncollinear antiferromagnets we predict Γimp,T ∝ T 5/2.

Recent neutron spin-echo experiment in a Heisenberg-
like antiferromagnet MnF2 [1] have reported significant
discrepancies between measured relaxation rate and pre-
dictions of the magnon-magnon scattering theory [5, 6],
precisely in the regime of low-T and small-k where the
theory is assumed to be most reliable. Although the cur-
rent work concerns the dynamics of strongly gapped ex-
citations and our results are not directly transferable to
the case of MnF2, we have, nevertheless, presented a gen-
eral case in which magnon-magnon scattering mechanism
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is completely overshadowed by impurity scattering, thus
suggesting a similar consideration in other systems.

Conclusions.—To conclude, we have presented a strong
evidence of the general situation in which temperature-
dependence of the relaxation rate of a magnetic excita-
tion is completely dominated by the effects induced by
simple structural disorder. Our results are strongly sup-
ported by the available experimental data. Further the-
oretical and experimental studies are suggested.
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