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With decreasing density, ns, the thermopower, S, of a low-disorder 2D electron system in silicon is
found to exhibit a sharp increase by more than an order of magnitude, tending to a divergence at a
finite, disorder-independent density, nt, consistent with the critical form (−T/S) ∝ (ns−nt)

x, with
x = 1.0± 0.1 (T is the temperature). Our results provide clear evidence for an interaction-induced
transition to a new phase at low density in a strongly-interacting electron system.

The behavior of strongly-interacting electrons in two
dimensions (2D) is a forefront area of condensed mat-
ter physics in which theoretical methods are still poorly
developed and new experimental results are of great
interest. Consistent with Fermi liquid theory at high
electron densities [1], these 2D systems are expected
to undergo one or more transitions to spatially and/or
spin-ordered phases as the density is decreased, ulti-
mately forming a Wigner crystal in the dilute, strongly-
interacting limit [2–6]. The interaction strength is char-
acterized by the ratio of the Coulomb energy to the
Fermi energy, determined by the dimensionless param-
eter, rs = 1/(πnsa

2
B)

1/2 (here ns is the areal density of
electrons, aB = ε~2/mbe

2, and ε, e, and mb are the di-
electric constant, the absolute value of electron charge,
and the band mass, respectively); the parameter rs is pro-

portional to n
−1/2
s and increases with decreasing electron

density, reaching values in excess of rs & 10 in systems
investigated experimentally to date. Particularly strong
many-body effects have been observed in silicon metal-
oxide-semiconductor field-effect transistors (MOSFETs).

In this Letter we report that the thermopower of a
low-disorder 2D electron system in silicon exhibits criti-
cal behavior with decreasing electron density, tending to-
ward a divergence at a well-defined disorder-independent
density, nt. Our results provide clear evidence for an
interaction-induced transition to a new phase at low den-
sity which may be a precursor phase, or a direct transi-
tion to the long sought-after Wigner solid.

The thermopower is defined as the ratio of the ther-
moelectric voltage to the temperature difference, S =
−∆V/∆T . Measurements were made in a sample-in-
vacuum Oxford dilution refrigerator with a base tem-
perature of ≈ 30 mK on (100)-silicon MOSFETs similar
to those previously used in Ref. [7]. The advantage of
these samples is a very low contact resistance (in “con-
ventional” silicon samples, high contact resistance be-
comes the main experimental obstacle in the low-density
low-temperature limit). To minimize contact resistance,
thin gaps in the gate metallization have been introduced,
which allows for maintaining high electron density near
the contacts regardless of its value in the main part of the
sample. The electron density was controlled by applying

a positive dc voltage to the gate relative to the contacts;
the oxide thickness was 150 nm. Samples were used with
Hall bar geometry of width 50 µm and distance 120 µm
between the central potential probes and measurements
of the thermoelectric voltage were obtained in the main
part of the sample (shaded in the inset to Fig. 1(a)). A
Hall contact pair, either 1-5 or 4-8, was employed as a
heater: the 2D electrons were locally heated by passing
an ac current at a low frequency f through either pair.
Both source and drain contacts were thermally anchored.
In such an arrangement it was possible to reverse the di-
rection of the temperature gradient induced in the central
region of the sample. The temperatures of the central
probes were determined using two thermometers glued
to the metallic pads on the sample holder connected by
metallic wires to the contacts on the sample; tempera-
ture gradients between contacts reached 1-5 mK over the
distance. The measured temperatures were independent
of electron density in the central region, indicating that
the heat flowed from heater to anchor through the lattice,
so that our experiment is similar to a standard set-up for
thermopower measurements. The average temperature
determined by the thermometers was checked to corre-
spond to the average electron temperature in the central
region measured using the calibrated sample resistivity.
The temperature difference between pairs of contacts 6,
7, and source/drain along the thermal path from heater
to anchor was monitored and found to be proportional
to the distance between the contacts, as expected. Con-
stantan or superconducting wiring was employed to min-
imize heat leaks from the sample. Possible RF pick-up
was carefully suppressed, and the thermoelectric voltage
was measured using a low-noise low-offset LI-75A pream-
plifier and a lock-in amplifier in the 2f mode in the fre-
quency range 0.01–0.1 Hz. The sample resistance was
measured by a standard 4-terminal technique at a fre-
quency 0.4 Hz. Excitation currents were kept sufficiently
small (0.1–1 nA) to ensure that measurements were taken
in the linear regime. The results shown in this paper were
obtained on a sample with a peak electron mobility close
to 3 m2/Vs at T = 0.1 K.

Our experimental results are shown in Figs. 1 through
3. Figure 1(a) shows data for the thermopower as a
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FIG. 1: (Color online) (a) Thermoelectric power, S, as a func-
tion of electron density ns at different temperatures. Many
data points are omitted for clarity. The inset is a schematic
view of the sample. The contacts include four pairs of poten-
tial probes, source, and drain; the main part of the sample
is shaded. The thermometers T1 and T2 measure the tem-
perature of the contacts. (b) The inverse thermopower as a
function of electron density at different temperatures. The
solid lines denote linear fits to the data and extrapolate to
zero at a density nt. The inset shows the resistivity as a func-
tion of temperature for electron densities (top to bottom):
0.768, 0.783, 0.798, 0.813, 0.828, 0.870, and 0.914× 1011 cm−2.

function of ns at different temperatures. (−S) increases
strongly with decreasing electron density and becomes
larger as the temperature is increased. The divergent
behavior of the thermopower is evident when plotted as
the inverse quantity, (−1/S), versus electron density in
Fig. 1(b).

Figure 2 shows (−T/S) plotted as a function of ns.
The data collapse onto a single curve demonstrating that
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FIG. 2: (Color online) (−T/S) versus electron density ns for
different temperatures. The solid line is a linear fit which
extrapolates to zero at nt. Also shown is the effective mass
m∗ obtained for the same samples by different measurements
[10]. The dashed line is a linear fit. Inset, upper left-hand
corner: log-log plot of (−T/S) versus (ns−nt), demonstrating
power law approach to the critical density, nt; Inset, lower
right-hand corner: (−T/S) versus density at T = 0.3 K for
a highly-disordered 2D electron system in silicon [8]. The
linear fit (solid line) extrapolates to zero at the same density
nt. The position of the density nc for the metal-insulator
transition was estimated to be 0.99± 0.02 × 1011 cm−2.

the thermopower S is a linear function of temperature.
In turn, the ratio (−T/S) is a function of electron density
ns of the form:

(−T/S) ∝ (ns − nt)
x. (1)

Fits to this expression indicate that the thermopower di-
verges with decreasing electron density with a critical
exponent x = 1.0 ± 0.1 at the density nt = 7.8 ± 0.1 ×

1010 cm−2 that is close to (or the same as) the density for
the metal-insultator transition, nc ≈ 8× 1010 cm−2, ob-
tained from resistivity measurements in this low-disorder
electron system (see the inset to Fig. 1(b)). The log-log
plot shown in the inset (upper left-hand corner) of Fig.
2 demonstrates the critical, power law, behavior of the
thermopower.
In Fig. 3 we show the product (−Sσ) that determines

the thermoelectric current j = −Sσ∇T as a function of
electron density at two different temperatures (here σ is
the conductivity). (−Sσ) is approximately constant in
the critical region, i.e., (1/S) is proportional to σ in the
low-disorder 2D electron system. Within the relaxation
time approximation, one expects the thermopower, S, to
depend only weakly on scattering, while the scattering
should play a major role in determining the conductiv-
ity. That (Sσ) is constant signals that disorder is not the
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FIG. 3: (Color online) The product (−Sσ) that determines
the thermoelectric current plotted as a function of electron
density ns at different temperatures. Inset: (−Sσ) versus
electron density at T = 0.3 K for a highly-disordered 2D
electron system in silicon [8]. The density nc for the metal-
insulator transition in this high-disorder sample is shown in
the lower right-hand inset of Fig. 2.

origin of the critical behavior in our samples, which de-
rives instead from strong electron-electron interactions.
The fact that the behavior shown in Fig. 2 continues
smoothly down to the lowest electron densities achieved
confirms that the disorder effects that might cause devi-
ations are minor.

Confirmation is provided by comparison with earlier
data obtained by Fletcher et al. [8] in a silicon sam-
ple with a high level of disorder, as indicated by the ap-
preciably higher density nc for the resistively-determined
metal-insulator transition. A replot of the thermopower
taken from Ref. [8], shown in the lower right-hand in-
set of Fig. 2, demonstrates that (−T/S) measured well
above the critical point extrapolates to the same den-
sity nt. However, in contrast with our data, (−Sσ) for
the higher-disorder silicon samples tends to zero at the
higher-density transition point nc (see inset to Fig. 3) due
to a rapidly decreasing conductivity σ for ns < nc. Thus,
while the resistive transition nc varies with disorder, the
divergence of the thermopower occurs at a density nt that
is independent of disorder [9]. This indicates clearly that
the transitions in low- and high-disorder silicon derive
from different sources: whereas in highly-disordered 2D
electron systems the conductivity tends to zero due to
disorder, in the clean 2D electron system the drop of the
conductivity occurs at the transition driven by electron-
electron interactions [10].

Based on Fermi liquid theory, Dolgopolov and Gold
[11, 12] recently obtained the following expression for the
diffusion thermopower of strongly interacting 2D elec-

trons in the low-temperature regime:

S = −α
2πk2BmT

3e~2ns
, (2)

where kB is Boltzmann’s constant and m is the effective
mass. This expression, which resembles the well-known
Mott relation for non-interacting electrons, was shown
to hold for the strongly-interacting case provided one in-
cludes the parameter α that depends on both disorder
[13–15] and interaction strength [11, 12]. The depen-
dence of α on electron density is rather weak, and the
main effect of electron-electron interactions is to suppress
the thermopower S.
Note that we have found S ∝ T , as expected for the

diffusion thermopower. This indicates that the phonon
drag contribution is small in the temperature range of
our experiments, and our measurements yield the contri-
bution of interest, namely, the diffusion thermopower.
The measured (−T/S), shown in Fig. 2, decreases lin-

early with decreasing electron density, extrapolating to
zero at nt. According to Eq. (2), (−T/S) is proportional
to (ns/m), indicating a strong increase of the mass by
more than an order of magnitude. Our results thus im-
ply a divergence of the electron mass at the density nt:
m ∝ ns/(ns−nt) — behavior that is typical in the vicin-
ity of an interaction-induced phase transition.
It is interesting to compare these results with the ef-

fective mass m∗ obtained earlier for the same samples,
where m∗ and the g-factor were determined by combin-
ing measurements of the slope of the conductivity versus
temperature with measurements of the parallel magnetic
field, B∗, for full spin polarization [10]. As seen in Fig. 2,
the two data sets display similar behavior. However, the
thermopower data do not yield the absolute value of m
because of uncertainty in the coefficient α in Eq. (2). The
value of m can be extracted from the thermopower data
by requiring that the two data sets in Fig. 2 correspond
to the same value of mass in the range of electron den-
sities where they overlap. Determined from the ratio of
the slopes, this yields a coefficient α ≈ 0.18. The corre-
sponding mass enhancement in the critical region reaches
m/mb ≈ 25 at ns ≈ 8.2×1010 cm−2, where the band mass
mb = 0.19me and me is the free electron mass. The mass
m ≈ 5me exceeds by far the values of the effective mass
obtained from previous experiments on the 2D electron
system in silicon as well as other 2D electron systems.
It is important to note that the current experiment

includes data for electron densities that are much closer
to the critical point than the earlier measurements, and
reports much larger enhancement of the effective mass
for reasons explained below.
The Zeeman field B∗ required to fully polarize the

spins and the thermopower measurements both imply a
large enhancement of the effective mass [16]. However,
the two experiments measure different effective masses:
the thermopower gives a measure of the mass at the
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Fermi level, while B∗ measures the mass related to the
bandwidth, which is the Fermi energy counted from the
band bottom. In other words, while the thermopower, as
well as the conductivity, are sensitive to the low energy
excitations within an energy range ∼ kBT near the Fermi
energy, the Zeeman field, B∗, for full spin polarization is
a measure of the bandwidth and is sensitive to the be-
havior of all states including those relatively far from the
Fermi energy.

For ns ≥ 1011 cm−2, the mass was found to be essen-
tially the same [17, 18], thereby justifying our determina-
tion of α. On the other hand, the behavior is different at
the densities reached in our experiment in the very close
vicinity of the critical point nt (ns < 1011 cm−2), where
the bandwidth-related mass was found to increase by
only a factor ≈ 4. Indeed, we argue that the bandwidth-
related mass does not increase strongly near nt. If so,
the ratio of the spin and cyclotron splittings in perpen-
dicular magnetic fields would increase considerably with
decreasing electron density so that the spin-up and spin-
down levels should cross whenever this ratio is an integer.
One should then observe a Shubnikov-de Haas oscillation
beating pattern with decreasing electron density, includ-
ing several switches between the oscillation numbers in
weak magnetic fields. Instead, the Shubnikov-de Haas
oscillations in the dilute 2D electron system in silicon
reveal one switch from cyclotron to spin minima (the ra-
tio of the spin and cyclotron splittings reaches ≈ 1) as
the electron density is decreased [19], the spin minima
surviving down to ns ≈ nc and even below [20].

In effect, while the bandwidth does not decrease ap-
preciably in the close vicinity of the critical point nt and
the effective mass obtained from such measurements does
not exhibit a true divergence, the thermopower measure-
ments yield the effective mass at the Fermi energy, which
does indeed diverge.

A divergence of the effective mass has been predicted
by a number of theories: using Gutzwiller’s theory [21];
using an analogy with He3 near the onset of Wigner crys-
tallization [22, 23]; extending the Fermi liquid concept to
the strongly-interacting limit [24]; solving an extended
Hubbard model using dynamical mean-field theory [25];
from a renormalization group analysis for multi-valley
2D systems [26]; by Monte-Carlo simulations [27, 28].
Some theories predict that the disorder is important for
the mass enhancement [26–28]. In contrast with most
theories that assume a parabolic spectrum, the authors
of Ref. [24] stress that there is a clear distinction be-
tween the mass at the Fermi level and the bandwidth-
related mass. In this respect, our conclusions are consis-
tent with the model of Ref. [24] in which a flattening at
the Fermi energy in the spectrum leads to a diverging ef-
fective mass. This Fermi liquid-based model implies the
existence of an intermediate phase that precedes Wigner
crystallization.

There has been a great deal of debate concerning the

origin of the interesting, enigmatic behavior in these
strongly interacting 2D electron systems. In particular,
many have questioned whether the change of the resistiv-
ity from metallic to insulating temperature dependence
signals a phase transition, or whether it is a crossover.
We close by noting that, unlike the resistivity which dis-
plays complex behavior that may not distinguish between
these two scenarios, we have shown that the thermopower
diverges at a well-defined density, providing clear evi-
dence that this is a transition to a new phase at low
densities. The next challenge is to determine the nature
of this phase.
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