
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Interacting One-Dimensional Fermionic Symmetry-
Protected Topological Phases

Evelyn Tang and Xiao-Gang Wen
Phys. Rev. Lett. 109, 096403 — Published 27 August 2012

DOI: 10.1103/PhysRevLett.109.096403

http://dx.doi.org/10.1103/PhysRevLett.109.096403


Interacting 1D fermionic symmetry protected topological phases

Evelyn Tang1 and Xiao-Gang Wen1, 2

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada

(Dated: Mar, 2012)

In free fermion systems with given symmetry and dimension, the possible topological phases
are labeled by elements of only three types of Abelian groups, 0, Z2, or Z. For example non-
interacting 1D fermionic superconducting phases with Sz spin rotation and time-reversal symmetries
are classified by Z. We show that with weak interactions, this classification reduces to Z4. Using
group cohomology, one can additionally show that there are only four distinct phases for such 1D
superconductors even with strong interactions. Comparing their projective representations, we find
all these four symmetry protected topological phases can be realized with free fermions. Further, we
show that 1D fermionic superconducting phases with Zn discrete Sz spin rotation and time-reversal
symmetries are classified by Z4 when n = even and Z2 when n = odd; again, all these strongly
interacting topological phases can be realized by non-interacting fermions. Our approach can be
applied to systems with other symmetries to see which 1D topological phases can be realized by free
fermions.

Symmetry protected topological (SPT) phases[1, 2] are
short range entangled states with symmetry protected
gapless edge excitations.[3–8] The Haldane phase on a
spin-1 chain[9, 10] and 2D/3D topological insulators[11–
16] are examples of SPT states. Using K-theory or
topological terms, all free-fermion SPT phases can be
classified[17, 18] for all 10 Altland-Zirnbauer symmetry
classes[19] of single-body Hamiltonians. It turns out that
different free fermion SPT phases are described by only
three types of Abelian groups, 0, Z2, or Z.

With interactions the classification is more varied,
however we must first describe the symmetry differently.
Instead of specifying the symmetry of single-body Hamil-
tonians, we treat the free fermion systems as many-body
systems and specify the many-body symmetry of their
many-body Hamiltonians. Only in this case can we accu-
rately add interaction terms to the many-body Hamilto-
nian that preserve the many-body symmetry, and study
their effect on the SPT phases of free fermions. A classi-
fication of various free-fermion gapped phases given their
many-body symmetry can be found in Ref. 20.

Fidkowski and Kitaev (also Turner, Pollmann and
Berg) studied interaction effects in one case: In
their 1D time-reversal (TR) invariant topological
superconductor[21–23] the Z classification in the free case
breaks down to Z8 with interactions that preserve TR
symmetry. Here we present another model beginning
with a lattice Hamiltonian for a 1D superconductor with
both TR and Sz spin-rotation symmetries, described by
the Z classification in the free case. With the addition
of weak interactions that preserve these symmetries, the
classification reduces to Z4 (see Table I). Our interaction
results are obtained by assuming that edge degeneracy
fully distinguishes each gapped phase; e.g. all states with-
out edge degeneracy belong to the same trivial phase.

We compare these four fermionic phases to the four
phases predicted separately from group cohomology[4,

Symmetry Free With

classification interactions

U(1)× ZT
2 Z Z4

Zn × ZT
2 (n even) Z Z4

Zn × ZT
2 (n odd and n > 1) Z Z2

TABLE I. Symmetry groups described by the 1D Hamiltonian
in Eq. 1 (where ZT

2 is time reversal), with their free fermion
classification and how they reduce with interactions. The
latter remains true with strong interactions so all such phases
can be realized with free fermions.

5, 24] (a method valid for strong interactions). We
find each fermionic phase has a distinct projective
representation[3, 4] and since group cohomology also
gives rise to four and only four distinct phases,[7] we con-
clude that free fermions can realize all strongly interact-
ing SPT phases in this case. We further study interaction
effects on a 1D superconductor with Zn discrete Sz spin
rotation and TR symmetries. For this symmetry group,
we find the SPT phases are classified by Z4 when n =
even and Z2 when n = odd. Again, these results are
separately obtained both from perturbing our fermionic
lattice Hamiltonian and from the group cohomology clas-
sification for strong interactions – showing that again, all
strongly interacting topological phases can be realized by
non-interacting fermions.

Free fermion lattice model — We write a 1D Hamilto-
nian with a trivial and two non-trivial phases

H = −t
∑
〈ij〉σ

c†iσcjσ − 2∆s

∑
j

c†j↑c
†
j↓ + h.c.

± i∆p/2
∑
j

c†j+1↑c
†
j↓ + cj+1↓cj↑ + h.c. (1)

where the first term is typical nearest-neighbor hopping,
the second term ∆s represents on-site pairing and the
last term with ∆p pairs electrons on adjacent sites.
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FIG. 1. (Color online). Phase diagram when varying the pa-
rameters ∆s and ∆p: The phase boundaries are ∆s = ±∆p

which separate three phases denoted by N = +1, 0 and -1. We
can make ∆s arbitrarily large without closing the gap: this
limit describes on-site pairing where any cut cleanly separates
the system in two without leaving edge states – allowing iden-
tification of this trivial N = 0 phase.

This Hamiltonian satisfies time-reversal T and Sz spin-
rotation symmetries specified on cTiσ = {ĉi↑, ĉi↓} as

T̂ ciσT̂
−1 = iσyciσ; eiθŜzciσe

−iθŜz =

(
e−iθ/2

eiθ/2

)
ciσ

so that T̂HT̂−1 = H and eiθŜzHe−iθŜz = H. As the
bandgap closes to leave just the hopping component when
∆s = ±∆p, we obtain the phase diagram in Fig. 1.

We start by identifying the trivial phase N = 0: When
|∆s| > |∆p|, we can arbitrarily increase the strength of
∆s without closing the gap. In the limit of ∆s much
larger than the other terms, the Hamiltonian simply re-
duces to on-site pairing — any cut cleanly separates the
system in two parts leaving no boundary states (see Fig.
1): this is the trivial N = 0 phase. Next, we look for
ground-state degeneracy at the interface between this
phase and its neighbors. This is most conveniently done
in a low-energy continuum model, where the effective
Hamiltonian becomes

H = −i
∫
dxΨ̃†

[
(σz ⊗ I)∂x +

(
m

−mT

)]
Ψ̃

in a basis of right and left-moving fermion operators
Ψ̃T =

(
ψR↑, iψ

†
R↓, iψ

†
L↓, ψL↑

)
close to the Fermi surface.

Here m = ∆pI−∆sσz.

Smoothly varying our mass term m(x) across an in-
terface, we set ∆p(x) = 1

2 (1 + tanhx) and ∆s(x) =
1
2 (1− tanhx). This has the zero-energy solution

ψ̂0+ =

∫
dxsech(x)(ψ̂R↑ + iψ̂†L↓) (2)

This complex fermion operator (ψ̂0+ 6= ψ̂†0+) with energy
E = 0 contains a double degeneracy (empty or filled) that
allows labelling of ∆p > |∆s| as the non-trivial N = 1

phase. This mode transforms under symmetry as

T̂

(
ψ̂0+

ψ̂†0+

)
T̂−1 = −σy

(
ψ̂0+

ψ̂†0+

)
,

eiθŜz ψ̂0+e
−iθŜz = e−iθ/2ψ̂0+ (3)

Since the two degenerate states differ by Sz = 1/2 and
are related by time-reversal, each state carries quantum
number of Sz = ±1/4 respectively.

Using the symmetry relations in Eq. 3, we check if any
perturbations in the Hamiltonian can shift the energy of
this mode. We find density terms δH = cψ̂†0+ψ̂0+ are
forbidden by TR, hence our ground-state degeneracy is
protected by system symmetries — this N = 1 phase is
stable against perturbations.

To find the N = −1 phase, we change ∆p(x) →
−∆p(x) and upon repeating our procedure, find a dif-
ferent zero mode solution that we label

ψ̂0− =

∫
dxsech(x)(iψ̂†R↓ − ψ̂L↑) (4)

and instead transforms as

T̂

(
ψ̂0−

ψ̂†0−

)
T̂−1 = σy

(
ψ̂0−

ψ̂†0−

)
,

eiθŜz ψ̂0−e
−iθŜz = e−iθ/2ψ̂0− (5)

This state has stable ground-state degeneracy as δH =
cψ̂†0−ψ̂0− is also forbidden by TR, indicating ∆p < |∆s|
is a non-trivial phase as well.

Is it meaningful to label this second non-trivial phase
N = −1? We examine what happens upon stacking two
chains both with non-trivial phases but the first with
∆p > |∆s| and the second with ∆p < |∆s|. (The first

chain would have the zero mode ψ̂0+ and the second
ψ̂0−.) We find the coupling δH = cψ̂†0+ψ̂0− + h.c. is
allowed within system symmetries and makes the ground
state nondegenerate. So two chains with two distinct zero
modes (labelled + and −) combine to become trivial, in-
dicating the two phases should be labelled with opposite
index. Naturally then the phase with ψ̂0− would be the
N = −1 phase, so this model indeed gives three symme-
try protected phases N = −1, 0 and +1.

While two chains containing zero modes with opposite
index become trivial, we further consider the stability of
two chains containing zero modes with the same positive
(or negative) index. This may generalize to larger inte-
gers in the Z group, so now we examine the stacking of
two chains with similar index more systematically.

A generic coupling term (see Fig. 2) is δH =

cψ̂†+aMabψ̂+b + h.c.. Here a and b are indices running

over the chain number 1,2... e.g. ψ̂+1 denotes a zero
mode from the N = 1 phase in the first chain; and Mab

is any generic coupling between these two operators. We
examine the simplest case of a = 1 and b = 2. Terms



3

FIG. 2. We stack two chains in the same non-trivial phase
with positive (or negative) index to see if their edge states are
stable. With the first chain a = 1 and the second b = 2, Mab

is any coupling between them. We find all possible couplings
are forbidden by our system symmetries so two similar modes
are stable and form the N = 2 phase.

of the form δH = cψ̂†+1M12ψ̂+2 + h.c. are forbidden by
TR symmetry as specified in Eq. 3, while fermion pair-
ing terms such as δH = cψ̂†+1M12ψ̂

†
+2 + h.c. violate Sz

spin rotation symmetry. As there are no other quadratic
fermion terms, the stacking of two chains is stable against
perturbations and combine to give an N = 2 phase.

Hence adding a number of 1D chains with positive in-
dex gives a positive integer in the Z group. The nega-
tive numbers are obtained simply by stacking chains with
ψ̂0−. As we showed earlier that a pair of ψ̂0+ and ψ̂0−
coupled together become trivial, the integer N in our Z
group is the difference between all positive and negative
zero modes. Then each phase labelled by N has 2|N |

degenerate ground-states.
Interaction effects — Now we allow couplings with an

arbitrary number of fermion operators. We look at terms
with four and two operators which take the general form

δH = Vabcdψ̂
†
+aψ̂+bψ̂

†
+cψ̂+d +Wabψ̂

†
+aψ̂+b + h.c. (6)

δH is compatible with both TR and Sz spin-rotation
symmetry when Vabcd and Wab satisfy certain conditions.

A possible term couples four separate chains through
an interaction with only V1234 6= 0. This δH is invariant
under both TR and Sz spin-rotation symmetry and cou-
ples two states |0101〉 and |1010〉 in our four-mode basis
(0 and 1 denote unoccupied and occupied respectively for
each of the four chains). Without interactions we have
a ground-state degeneracy of 24 = 16; with interactions
two of these 16 states split in energy by δE = ±|V1234|,
see Fig. 3. This makes the ground-state nondegenerate
and the phase N = 4 trivial.

Since four chains with all positive (or negative) index
are equivalent to the trivial phase, we can smoothly con-
nect the N = 3 phase to the N = −1 phase by adding
four chains with all negative index. So with only three
distinct non-trivial phases, the Z integer classification for
free fermions reduces to Z4 in the presence of interactions.

Four-fermion interaction terms also reduce the ground-
state degeneracy in the N = 2 phase from 22 = 4 to a
two-fold degeneracy. The term

δH = V1122(ψ̂†+1ψ̂+1 − ψ̂+1ψ̂
†
+1)(ψ̂†+2ψ̂+2 − ψ̂+2ψ̂

†
+2)

causes two states |00〉 and |11〉 to shift in energy by V1122
while two other states |01〉 and |10〉 shift by −V1122. As

FIG. 3. Without interactions V1234 = 0 the ground-state
degeneracy for four zero modes is 24 = 16. With interactions
V1234 6= 0 two states are split by δE = ±|V1234|, making the
ground state nondegenerate and this N = 4 phase trivial. As
N = 4 is now smoothly connected to the trivial N = 0 phase,
our classification reduces from Z to Z4 with interactions.

we still have doubled ground-state degeneracy, the state
N = 2 remains non-trivial. To summarize, interaction
effects reduce our degeneracy leaving three non-trivial
phases each with a two-fold ground state degeneracy.

Four distinct projective representations — Our results
demonstrate the stability of free fermion phases with
weak interactions. This method may not capture all pos-
sible interacting phases as strongly interacting topologi-
cal phases may not adiabatically connect to free fermion
phases. Or, different phases from weak interactions may
become the same phase with strong interactions. To
address these issues, we illustrate a distinct projective
representation[25] for each phase which corresponds to a
different 1D SPT phase.

Using the symmetry operations defined in Eqs. 3 and
5, we write their matrix representation on the degenerate
subspace. In the N = 1 phase with basis |0+〉 and |1+〉

Uθ →M(Uθ) =

(
1

e−iθ/2

)
, T̃ →M(T̃ )K = σxK

where T̃ = U−πT , a rotated TR operator we can intro-
duce since Uθ and T commute; and K is the anti-unitary
operator corresponding to complex conjugation. Then

M(T̃ )KM(Uθ) = eiθ/2M(Uθ)M(T̃ )K (7)

and M(T̃ )KM(T̃ )K = 1. This is a projective representa-
tion as the phase in Eq. 7 cannot be removed by adding
any phase factor to M(Uθ).

Moving to the N = −1 phase with ground states |0−〉
and |1−〉, we have the same representation for M(Uθ)
while M(T̃ )K = e−iσzπ/2σxK in this case. Eq. 7 remains
true but nowM(T̃ )KM(T̃ )K = −1 so we have a different
projective representation.

In the N = 2 phase, our ground states are four-fold:
|0+0+〉, |0+1+〉, |1+0+〉 and |1+1+〉. Here

M(Uθ) =

(
eiθ/4

e−iθ/4

)
⊗

(
eiθ/4

e−iθ/4

)
,

M(T̃ )K = σx ⊗ σyK. (8)
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While M(T̃ )K and M(Uθ) commute this time,
M(T̃ )KM(T̃ )K = −1 again making a third non-trivial
projective representation.

As each non-trivial phase has a distinct non-trivial pro-
jective representation, they remain distinct phases even
when interactions are strong. We can compare our results
to the unperturbative bosonic classification in 1D ob-
tained by group cohomology[4, 7, 24] as we can bosonize
our fermionic model. The resulting bosonic model would
have the same symmetry U(1) × ZT2 with phases classi-
fied by Z2 × Z2, i.e. four distinct projective represen-
tations there correspond to four different strongly inter-
acting phases. Our fermionic results similarly contain all
four phases with these distinct projective representations,
so this model realizes all possible non-trivial phases with
strong interactions.

Modifying symmetry from U(1) to Zn spin-rotation —
As our fermion model respects Sz spin-rotation and TR
symmetry, it naturally contains Zn discrete spin-rotation
as well. We can replace U(1) spin-rotation by Zn spin-
rotation, i.e. rotation by an arbitrary angle is now con-
strained to values of θ = 2π/n and our new symmetry
group has generators time-reversal T and discrete Sz ro-
tation R = e iSz

2π
n satisfying

T 2 = (−)NF , Rn = (−)NF , TR = RT. (9)

Here (−)NF is the fermion number parity operator.
When n = even, this group G(T,Zn) is generated by

R and T̃ = Rn/2T , so G(T,Zn) = Z2n × Z T̃2 . When n =
odd, we find that R̃ = RT alone generates this group
G(T,Zn) = ZT4n[26].

For n ≥ 2, no new fermion bilinear terms are allowed
so the free fermion classification does not change from Z.
In the case of n = 1, new quadratic terms of the form
δH = cψ̂†+1ψ̂

†
+2 + h.c. are permitted. This term couples

two chains forming the N = 2 phase to make the ground-
state nondegenerate. The N = 2 phase becomes trivial
and the classification for n = 1 reduces to Z2.

Similarly for higher n, we can always add interacting
terms with 2n ψ̂+ operators similar to the term in the
n = 1 case above. For n = 2 for instance, this term is
δH = cψ̂†+1ψ̂

†
+2ψ̂

†
+3ψ̂

†
+4 + h.c.. Such interactions couple

2n zero modes each in the N = 1 phase to render the
ground-state nondegenerate. In effect, Zn spin-rotation
symmetry allows interactions that reduce the classifica-
tion to Z2n.

We had established that under U(1) spin-rotation sym-
metry, interactions reduce the classification to Z4. In-
cluding more interactions as allowed by Zn spin-rotation
further reduce the classification to Z2n. Taken together,
we find there is no effect on even n which remains Z4

since 2n is a multiple of 4. Odd n, however, reduces
to a Z2 classification (as 2 becomes the largest common
denominator between 2n and 4).

The number of non-trivial phases can be compared
to and matches with the group cohomology prediction

Z2 × Z2 for even n and Z2 for odd n[26]. We find that
different symmetry groups with the same free fermion
classification reduce to various results (here Z4 or Z2

are examples) in the presence of interactions (summary
in Table I). As verified by comparison of these phases
with group cohomology, all possible strongly-interacting
phases can be realized by free fermions in this model.

Lastly, we note that our classification is protected only
by system symmetries of spin-rotation and TR. As shown
earlier, without such symmetry a term δH = cψ̂†0+ψ̂0+

would be permitted which renders the ground-state non-
degenerate and the classification trivial (Z1).

Discussion — We study the SPT phases of 1D
fermionic superconductors with TR and Sz spin-rotation
symmetries. If fermions do not interact, their classifica-
tion is given by the Z group; with weak interactions this
reduces to a Z4 classification. As each of our four fermion
phases have distinct projective representations, they cor-
respond to four distinct phases by comparison with group
cohomology, which predicts four and only four different
gapped phases even with strong interactions.

Hence all distinct symmetric gapped phases with
strong interactions are realized by non-interacting
fermions in this case. Fermion parity is part of our
U(1) symmetry which cannot be spontaneously broken.
Therefore this model does not have the fermion par-
ity symmetry broken phases corresponding to Majorana
topological modes[24]. The edge states in our 1D su-
perconductors are described by complex fermions and
it is unsurprising that our interacting classification is
half of the result from Kitaev and Fidkowski’s Majorana
model[21–23].

We further studied the SPT phases of 1D supercon-
ductors with TR and Zn discrete Sz spin-rotation sym-
metries, to find they are classified by Z4 when n = even
and Z2 when n = odd. Again, as phases in our fermionic
model matches with the group cohomology prediction,
all gapped phases of these 1D fermionic superconductors
are also realized by non-interacting fermions.

Interactions on different symmetry groups with the
same free fermion classification give rise to varied re-
sults (Table I). Here perturbing from a free fermion
model gives all strongly interacting phases, however in
other cases such phases may not be realizable with free
fermions. Lastly, the effectiveness of this method remains
open especially in higher dimensions where additional
tools may be needed. Further study of different symme-
try groups or in higher dimensions would be worthwhile.

Towards the completion of this paper, we noted the
work of A. Rosch (arXiv:1203.5541) which shows “a topo-
logical insulator made of four chains of superconducting
spinless fermions characterized by four Majorana edge
states can adiabatically be deformed into a trivial band
insulator” via “interactions to spinful fermions”, which
has some relation to our Z4 classification of 1D fermionic
superconducting phases with TR and Sz spin-rotation
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