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We show that slowly sheared metallic nano-crystals deform via discrete strain-
bursts (slips), whose size-distributions follow power-laws with stress-dependent 
cutoffs. We show for the first time that plasticity reflects tuned criticality, by 
collapsing the stress-dependent slip-size distributions onto a predicted scaling- 
function. Both, power-law exponents and scaling-function agree with mean-field 
theory predictions. Our study of 7 materials, 2 crystal structures, at various 
deformation-rates, stresses, and crystal sizes down to 75 nm, attests to the universal 
characteristics of plasticity.  
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Introduction:  

Sheared small-scale crystals deform via a sequence of discrete slips, measurable either as 
steps in stress-strain curves or as acoustic emission pulses [1-13]. We show that the 
statistical distributions of the slip-sizes, and their stress-dependence (1) reflect tuned 
criticality, (2) agree with the predictions of a simple mean field theory (MFT) model, 
down to 75 nm diameter samples, and (3) reflect the same scaling behavior (universality) 
for a wide variety of materials, crystal structures, size-scales, and experimental 
parameters. 

The slips are caused by dislocation slip-avalanches resulting from rapid dislocation 
nucleation or sudden releases of dislocations from pinned sources. They stop when all 
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slipping dislocation segments have either repinned or are annihilated. Recent experiments 
on the axial compression of micron and sub-micron sized crystals reported that the stress-
integrated distributions (histograms)  Dint(S) of all slip-sizes S (starting from the initiation 
of compression to pillar failure), follow a power-law Dint(S) ~ S-1.5 over several decades 
in S. Here S is the total axial displacement during an avalanche (see Supplementary 
Online Material (SOM)). This has been seen in experiments on micron and sub-micron 
pillars of face-centered cubic (fcc) metals (Cu, Al, Au, Ni), and one body-centered cubic 
(bcc) metal (Mo) [8,9,14-16].  However, up to now, the slip statistics were far from 
understood. Here we report three main results that provide a new unified understanding: 

(1) Tuned criticality: Previous experimental studies focused on fitting exponents 
k to power-law distributions D(S)~S-κ, similar to self-organized criticality (SOC) 
[5,6,8].  SOC assumes that the (“cutoff-”) size Smax of the largest observed 
avalanche exclusively depends on the system-size, and not on other experimental 
parameters. However, a simple analytical MFT model [2] and simulations [1] 
predict that the cutoff Smax can also depend on the stress, implying that plasticity 
reflects tuned criticality. The long-standing fundamental debate of SOC versus 
tuned criticality so far has remained unresolved for plasticity, due to a lack of 
experimental evidence of cutoff-tuneability. Here we show for the first time that 
for nano-crystals the cutoff-size grows as the stress approaches the  failure-stress, 
(or “critical stress”) tc as predicted by MFT and simulations [1,2]. Below the 
critical stress, a slow stress-increase in the material produces microscopically 
small slip-avalanches. Above the critical  stress tc the material deforms in a 
macroscopic slip-avalanche until it fails.  The model predicts that the critical 
stress tc is a critical point separating these two regimes. (The value of tc depends 
on the details of the system [17-19].) Near tc the system shows universal (detail-
independent) avalanche statistics, as predicted by the theory of phase transitions 
and the renormalization group [2,18,19]. We extract a predicted scaling-collapse 
of the stress-dependent avalanche-size distributions from the experiments which 
shows that plasticity indeed reflects the predicted tuned critical point with stress 
as a tuning-parameter. We also show why tuned criticality was not observed 
before in experiments and how it is reconciled with previous experiments. 

(2) Agreement with MFT predictions: The MFT slip-size distribution depends 
on stress τ as D(S,t)~ S-κfS(S(τc-τ)1/σ) where κ=1.5, σ=0.5, and fS(x) is an 
exponentially decaying universal scaling function [2].  Consequently the largest 
expected avalanche-size Smax(t) grows with stress as Smax(t) ~ (tc-t)-1/σ.  For the 
first time we extract and collapse the experimental avalanche-size distributions 
D(S,t) from different stress-bins. The scaling-collapse agrees with the MFT 
predictions for κ=1.5, σ=0.5, and the scaling-function, which contains more 
information than the traditionally fitted power-law exponent κ alone. This 
collapse thus constitutes a much more stringent test of MFT, confirming that the 
slip statistics of plasticity indeed reflect the underlying tuned non-equilibrium 
critical point predicted by MFT [1-3], as explained above. The model also 
explains our observed dependence of the slip-statistics on compression rate and 
system size.  
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(3) Universality: The simple MFT provides a unified understanding of plasticity 
at nano- and micro-scales [10-12].  In experiments, at first sight, plasticity looks 
different on these two scales. At nano-scales the lattice structure matters.  For 
example, the dislocation dynamics and the criticality-slope (defined as the slope 
of the stress-strain curve prior to failure (Figure 1C)), depend on the material’s 
crystal structure [9-12,17].  Here, we show (a) how MFT relates these features to 
the slip-statistics, and (b) that MFT applies to all crystal structures on nano- and 
micro-scales, despite the apparent differences observed in experiments.  

In summary, we show that MFT provides a unified explanation for plasticity as a tuned 
critical phenomenon under a wide variety of conditions: for pillar sizes ranging from 75 
nm to 1 µm, for strain rates less than or on the order of 1x10-4 s-1, for different materials 
and for different crystal structures. It predicts the power-law exponents and scaling 
function of the slip-size distributions, and the stress-dependence of their cutoffs.  

In the following we first discuss the model predictions and then compare them to stress-
integrated and stress-binned (i.e. stress-dependent) slip-size distributions measured 
during uniaxial compression of nano-pillars for different values of stress, deformation 
rate, and pillar-size. The analysis tools and methods [18] applied here to experiments are 
generally applicable to a much broader set of future experiments on plasticity and slip-
avalanche statistics [19,20]. 

Simple MFT model for slow shear: Our simple coarse-grained model is described in 
detail in [2]. It makes robust statistical predictions for material deformation given the 
following assumptions: 

1. A slowly sheared material has weak spots where slip initiates when the local 
stress exceeds a random local threshold stress. 

2. Slip-avalanches occur at length scales that are large compared with the 
microscopic structure of the material. 

3. The material is sheared sufficiently slowly so that slip-avalanches do not overlap 
in time. 

4. The MFT approximation replaces the long-range elastic interactions with infinite 
range interactions. 

A failed spot slips until the local stress is reduced to a random arrest stress, and then re-
sticks.  The stress released by a failed spot triggers other elastically coupled weak spots to 
slip, creating a slip-avalanche. According to assumption 3, avalanches occur faster than 
the slow, imposed material deformation. We extract detail-independent (universal) 
analytical predictions [2], which agree with numerical studies of continuum models 
[1,21], phase fields [22], phase field crystals [23], discrete 2D dislocation dynamics 
[1,3,21,24,25], and full 3D dislocation dynamics simulations [26]. 

At applied stress τ, the model predicts that the stress-dependent (“stress-binned”) 
distribution D(S, τ) of slip-sizes S follows a power-law S-κ up to a stress-dependent cutoff 
size Smax ~(τc-τ)-1/σ (this is the tuneability prediction of MFT) [2]:  
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D(S,τ) ~ S-κfS(S(τc-τ)1/σ). 

Here S is the total displacement during a slip-avalanche (see SOM). The exponents κ=3/2 
and 1/σ=2 and the cutoff scaling-function fS(x) are universal [1,2]. In MFT, fS(x) = exp(-
Ax) where A is a non-universal constant [2]. τc is again the failure-stress, also called 
“critical stress”. The stress-binned complementary cumulative distribution-function 
(CCDF) is  

                      
( 1) 1/( , ) ~ ', ~ ( ( ) )cS

C S D(S τ)dS' S g Sκ στ τ τ
∞ − − −∫

                      
(1) 

where ( ) At

x
g x e t dtκ∞ − −≡ ∫  is the universal scaling-function (see Figure 4, inset). MFT 

predicts that the stress-integrated histogram Dint(S) of slip-sizes follows a power-law (see 
SOM) 

                                              
Dint ( S )≡ ∫ D( S,τ )dτ ~ S− (κ+σ )

                              (2) 

with κ+σ=2. The stress-integrated CCDF       
     1

int ~ (κ+σ )

S
C (S) D (S')dS' S

∞ − −≡ ∫                                   (3)  
then scales as C(S) ~ S–1 in MFT (Figures 2-4). MFT predicts identical power-law 
exponents for fcc nano-pillars (whose stress strain curves end with the virtually-vanishing 
criticality-slopes), as for bcc metals (with a finite, non-zero criticality-slope) [2,17]. The 
above predictions apply to slow compression rates where avalanches are separated in 
time. 

At higher compression rates Ω, avalanches can overlap in time. A general theory [27] 
predicts that merging of avalanches in time, i.e. activating new avalanches before the 
previous ones complete, leads to smaller exponent values at higher Ω [27]: at faster 
compression rates Ω we expect κ+σ<2, while at slow Ω we expect κ+σ=2 (Figure 3 and 
Eq.(2)). 

Compression experiments on single-crystalline nano-pillars: Experimental load and 
displacement data were obtained from uniaxial compressions of fcc and bcc single-
crystalline, cylindrical nano-pillars with diameters ranging from 75 nm to 1000 nm and 
aspect ratios (height/diameter) between 3:1 and 6:1 (Figure 1). The experimental 
procedure (methods section) provided time series of applied load, axial displacement, and 
slip-sizes S for each tested pillar. The sampling frequency was 25 Hz, and by noting 
where the slip-distribution changes from power-law to Gaussian we concluded that slip 
identification was reliable down to events as small as O(0.3nm). Au, Nb, Mo, Ta, and W 
nano-pillars were fabricated via focused ion beam (FIB) methodology [9,15,16], and Cu 
pillars were created via templated electroplating [28], and were compressed at various 
displacement rates. For slowly increasing applied load, the stress remains approximately 
constant during each slip, as assumed in the model. This applies to all experiments, as the 
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slip speed is much greater than the externally imposed strain rates [29]. The data were 
collected on two nanoindenters, one with high stiffness of 300000 N/m, and one with 
stiffness of 65000 N/m; no systematic difference based on machine stiffness was 
observed. 

Figures 2-4 and 5 respectively show experimental stress-integrated and stress-binned 
complementary cumulative histograms. The major source of error is statistical, caused by 
small event-numbers. Across all tested materials, the cumulative histograms display a 
power-law regime with an exponent close to the theoretical value of -1 (see Figure 2). 
The data in Figure 2 were collected for large system-sizes and at low nominal 
displacement rates − a regime closest to the scaling regime of the MFT model. These 
plots show that both fcc and bcc nano-crystals of different diameters and compressed at 
different displacement rates display the same power-law exponents despite the distinct 
differences in their dislocation behavior as reported in [9,17]. The materials show slight 
differences in how the changing nominal displacement rates affect the statistical data. 

Figure 3 shows the results for three different nominal displacement rates, varying by an 
order of magnitude, for 800nm diameter Au and Mo pillars. The avalanche-size 
distribution for Mo is fairly robust from 0.1 to 1nm/s, but the magnitude of the fitted 
scaling exponent of C(S) decreases at 10nm/s.  Au is much more sensitive to the 
prescribed displacement rate: the magnitude of the scaling exponent of C(S) again 
decreases with the increasing displacement rate. As discussed in the theory section and in 
[27], at higher driving rates avalanches can overlap in time, thereby reducing the scaling 
exponents of C(S). Note that limited time resolution may also cause avalanches to appear 
as overlapping in time. Theory predicts that the amounts by which the exponents change 
as the displacement rate is increased depend on the material [27], as corroborated by our 
experiments. The results of Figure 3 for different nominal displacement rates are thus 
consistent with the theories of [2] and [27]. 

We also considered the impact of system-size on the slip-size distributions. Sufficiently 
close to the critical (failure) stress, the correlation length reaches the system-size. 
Consequently the pillar diameter projected onto a shear slip-plane determines the scale of 
the largest slip-events, and, hence, the cutoff of the stress-integrated slip-size distribution. 
Figure 4 shows C(S) for Cu, for various nano-pillar sizes compressed at the same 
displacement rate of 2nm/s. Although events are few and statistical fluctuations 
pronounced, the trend of increasing maximum avalanche-size with system-size is visible 
in Figure 4. 

Figure 5 shows that the cumulative slip-size histograms binned in stress also agree with 
the model’s prediction for C(S,τ) of Eq. (1) (see SOM). The main figure shows data from 
four distinct stress-bins, while the inset shows a data collapse using the exponents κ-1= 
0.5 and 1/σ=2 predicted by MFT. Stress-bins closer to the critical stress than those shown 
were not used in the collapse, in order to avoid finite size effects (since near the critical 
stress, the correlation-length is capped by the system-size, see SOM). The inset shows 
that the theoretically predicted collapse function (continuous grey line) falls on top of the 
experimental collapse. This reveals that MFT not only predicts the exponents used for the 
successful collapse, but also predicts the scaling-function [2]. This constitutes the first 
experimental validation of a universal scaling-function predicted by the simple MFT 
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model. The collapse also confirms the stress-integrated power-law of -1 for C(S) seen in 
Figures 2-4. 
 
Discussion: Recent uniaxial deformation experiments and simulations provide insight 
into the physical nature of dislocation sources, size dependence of material strength, 
strain rate sensitivity, and amount of hardening [10-12]. The consensus is that these 
factors vary greatly between fcc and bcc crystals, and from nano- to microscale. The 
question emerges whether these differences are also manifested by the dislocation slip 
statistics. Our experiments yield a stress-integrated exponent of κ+σ=2 for the slip-size 
distributions, for both bcc and fcc nano-pillars with diameters between 75nm and 1µm, in 
agreement with the MFT prediction. In contrast, previous experiments on Mo and Au 
[9,14] have reported a size-distribution exponent of 1.5 for samples ranging in size from 
180nm to 6μm. Our model provides a unified understanding of the statistics in all these 
cases:  

(1) The compression experiments of [14] on sub-micron samples were performed at 
higher effective compression-rates (Figure 3), where lower exponents can be 
explained by the merging, of slip-avalanches [27]. We observed significant 
impact on the exponent for rates as slow as 1nm/s. 

(2) Many micron-sized samples display a large regime before failure where the stress-
strain curve is linear due to hardening [8,11]. Such behavior can be captured by 
modifying the MFT model to include hardening through incorporating an 
increased resistance to slip during deformation. In this case, the effective stress-
distance from criticality remains constant [1], and the experiment effectively 
measures κ rather than κ+σ. In this case the SOC assumption [5,6,8] with the 
measured value of κ=1.5 is valid and agrees with the MFT predictions [1, 2, 26, 
30]. 

In conclusion, this study presents the first scaling-collapse and scaling-function extracted 
from compression experiments on nanopillars and micropillars. It shows that plasticity is 
a tuned critical phenomenon. Both the exponents and the scaling-function of the stress-
dependent strain-bursts statistics agree with predictions from a simple analytical MFT 
model. This agreement constitutes the most stringent test of the MFT model and tuned 
criticality to date, since scaling-functions contain much more information than the 
traditional sets of exponents. The agreement between the MFT model and experiments 
for a wide variety of metallic nano-crystals subjected to widely varying experimental 
conditions suggests that a single universality class fully describes discrete crystalline 
deformation at these small length scales. This holds true under a wide variety of 
conditions: for pillar sizes ranging from 75 nm to 1 µm, for strain rates less than or on the 
order of 1x10-4 s-1 and for different materials including those with fcc and bcc crystal 
structures. This agreement is observed both in the power-law scaling of the event 
frequency as well as in the stress-dependence of the slip-size distributions. This 
robustness indicates that these analysis methods are broadly applicable to other non-
equilibrium systems with driving-force dependent avalanches [19]. In the context of the 
renormalization group [2,18,19] our results imply that the same fundamental properties—
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symmetries, dimensions, interaction range, etc.—control the statistics of slips in metallic 
crystals, down to the smallest currently accessible length scales.  
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Figures 
 

 
 

Figure 1: Nano-pillar compression tests. A,B: SEM images of a 868nm-diameter Nb 
pillar at 52º tilt, before and after compression, respectively. B: Pillar after final 
catastrophic slip-event; slip-data at the largest strains is excluded from the analysis. C: 
Characteristic stress-strain curves (each contains thousands of points) for four metals 
compressed at different displacement-rates. Negatively-sloped lines connect two points at 
beginning and end of fast slips, with spring-like machine-response. The Nb stress-strain 
curve corresponds to the pillar in A-B. The “criticality-slope” line is fitted to the average 
slope of curve 4, near the critical (failure) stress (see text). D: schematic of the 
compression test methodology. For details see SOM.  
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Figure 2: Stress-integrated cumulative histograms C(S) of slip-sizes S (i.e. the fraction of 
slips with sizes > S plotted versus S) for uniaxial compression of various materials, pillar-
sizes, and nominal displacement-rates, integrated over stress from zero to critical (failure) 
stress. C(S) contains hundreds of points (one point per event). Error-bars (from Bayesian 
95% confidence bounds (see SOM)) are shown for histograms with the most and the least 
points for clarity. Fitted PDF power-law exponents: 2.1±0.1 (Au), 1.85±0.1 (Mo), 
1.8±0.2 (Cu), and 1.9±0.2 (Nb) (subtract 1 for CDF exponents). Fits were obtained from 
maximum likelihood estimates [31] (see SOM for error bars and fitting techniques for all 
figures). 



12 
 

 

Figure 3: Stress-integrated cumulative histograms C(S) of slip-sizes S for uniaxial 
compression data: comparison of the impact of nominal displacement-rate for Mo and Au 
pillars of diameter 800nm. The nominal displacement-rate impacts the apparent power-
laws of the cumulative slip-size histograms. The fitted PDF exponents are: 2.1±0.1, 
1.45±0.1, 1.2±0.2, 1.85±0.1, 1.8±0.1, and 1.6±0.3, in the order of the legend (subtract 1 
for CDF exponents). The lowest rates are used to compare with model predictions. 
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Figure 4: Stress-integrated cumulative histograms C(S) of the slip-size S for various sizes 
of Cu nano-pillars compressed at a displacement-rate of 2 nm/s. Larger pillars have larger 
maximum slip-events, except for the 125nm pillars, for which less data was taken.  (For 
power-law distributions, the largest expected slip-size increases with the total number of 
slips.)  

  



14 
 

 

 

Figure 5: Main figure: Stress-binned cumulative histogram C(S,τ) of slip-sizes S as a 
function of applied stress τ, using events from 7 Mo nano-pillars, of approximate 
diameter 800nm, compressed at 0.1nm/s nominal displacement rate. The events from 
each pillar are normalized according to their respective maximum stress. Inset: Scaling-
collapse of the same data, f = (τc-τ)/τc – c’, where c’ = 0.14 is an adjustable parameter that 
compensates for finite system-size (see SOM); κ=1.5 and 1/σ =2 (as predicted by MFT), 

the grey function is the predicted MFT scaling-function, ( ) At

x
g x e t dtκ∞ − −≡ ∫ . 


