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We introduce a general, efficient method to completely describe the topology of individual grains,
bubbles, and cells in three-dimensional polycrystals, foams, and other multicellular microstructures.
This approach is applied to a pair of three-dimensional microstructures that are often regarded as
close analogues in the literature: one resulting from normal grain growth (mean curvature flow) and
another resulting from a random Poisson–Voronoi tessellation of space. Grain growth strongly favors
particular grain topologies, compared with the Poisson–Voronoi model. Moreover, the frequencies of
highly symmetric grains are orders of magnitude higher in the the grain growth microstructure than
they are in the Poisson–Voronoi one. Grain topology statistics provide a strong, robust differentiator
of different cellular microstructures and provide hints to the processes that drive different classes of
microstructure evolution.

PACS numbers: 61.72.-y, 61.43.Bn

Characterizing the microstructure of materials has oc-
cupied an important place in much theoretical, experi-
mental, and computational work over the last fifty years.
Such microstructures include the cellular structure of
foams, polycrystalline materials and biological systems.
Different cellular structures share many features in com-
mon, yet even rudimentary analysis shows that struc-
tures resulting from different formation or evolution pro-
cesses can be startlingly different. For example, Poisson–
Voronoi tessellation of space yields a microstructure that
is akin to those produced by crystallization or recrys-
tallization [1], while structures that evolve through cur-
vature flow describe normal grain growth structures [2].
Despite the differences in the resulting structures, the
former is often assumed to accurately represent experi-
mental systems, despite the fact that the latter may be
more suitable. This is important because such structural
differences can lead to markedly different physical prop-
erties.

Describing grains of such microstructures involves
measuring not only their geometric features such as mean
cell size and aspect ratio, but also their topological fea-
tures. Historically, the topology of an individual grain
has been commonly described using only its number of
faces (e.g., see [3, 4]); this is motivated both by the fact
that this is a relatively straightforward measurement and
because of its analogy to key features of the rigorous the-
ory of two-dimensional grain growth [5, 6]. The sim-
plicity of this characterization allows for easy gathering
and succinct presentation of data and has been widely
applied experimentally and in theory and simulations.
While the number of faces of a grain is a basic topo-
logical descriptor, it is clearly incomplete; consider the
two topologically distinct 6-faced grains in Fig. 1. In this
Letter, we present a new method of completely describing
the topology of grains or cells within three-dimensional
microstructures and apply it to show several stark dif-

ferences between the Poisson–Voronoi and normal grain
growth microstructures.

FIG. 1. Two topologically distinct 6-faced grains.

A more detailed topological description was introduced
by Matzke [7] for bubbles in soap foams. Matzke char-
acterized a large population of bubbles by recording the
total number of faces and the number of edges of each
face in each bubble. This method distinguishes between
the two grains in Fig. 1—the first contains six quadrilat-
eral faces; the second two triangular, two quadrilateral,
and two pentagonal faces. We associate a vector of non-
negative integers with each grain: the ith entry counts the
number of i-sided faces. Following [8], we call this the p-
vector of a grain. The grains illustrated in Fig. 1 have
distinct p-vectors (0022200...) and (0006000...). This fa-
cilitates a more detailed characterization of the topology
of a grain than does recording only its number of faces;
e.g., it allows the determination of the fraction of 12-faced
grains that are pentagonal dodecahedra.
Although powerful, this approach has not been widely

applied. Historically, obtaining and analyzing large grain
growth or bubble microstructures (by experiment or sim-
ulation) has been quite difficult. Many recent large grain
growth simulations use methods that do not directly
lend themselves to topological analysis—phase field [9],
Monte Carlo [10] and diffusion-based [11] simulations
employ implicit descriptions of grain shape, complicat-
ing accurate topological analysis. On the other hand,
front-tracking, three-dimensional grain growth simula-
tions [12, 13] produce large microstructures from which
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Poisson–Voronoi

F p-vector f(%)
12 (001343100...) 0.39
11 (001342100...) 0.33
13 (001433200...) 0.30
13 (002333110...) 0.29
9 (001332000...) 0.28
13 (001344100...) 0.28
13 (001352200...) 0.28
11 (001423100...) 0.28

Grain-growth

F p-vector f(%)
8 (000440000...) 2.83
10 (000442000...) 2.38
9 (000360000...) 1.86
11 (000443000...) 1.86
9 (000441000...) 1.63
7 (000520000...) 1.48
12 (000363000...) 1.45
10 (000361000...) 1.43

TABLE I. Lists of the eight most common p-vectors, their
number of faces F , and their frequencies f in the Voronoi and
grain growth microstructures. The relative errors in the p-
vector frequencies are less than 4% for the Poisson–Voronoi
microstructure and less than 2% for the grain growth one.

grain topology may be readily extracted [14]. The statis-
tics reported below include contributions from 25 steady-
state normal grain growth microstructures [14], each con-
taining about 10,782 grains (i.e., 269,555 grains in to-
tal). A Poisson–Voronoi microstructure, generated by a
Voronoi tessellation of 269,555 Poisson-distributed points
in the periodic unit cube, is used as a comparative mi-
crostructure.
Table I enumerates the most common p-vectors in the

Poisson–Voronoi and grain growth microstructures. Two
differences between the microstructures are readily ap-
parent. All of the frequently occurring p-vectors in the
Poisson–Voronoi microstructure contain at least one tri-
angular face. By contrast, not one of the frequently oc-
curring p-vectors in the grain growth structures contains
a triangular face. Also, almost all frequently occurring p-
vectors in the Poisson–Voronoi structure contain at least
one heptagonal face, while the frequently occurring p-
vectors in the grain growth structures do not.
One might attribute this discrepancy to the higher fre-

quency of triangular faces in the Poisson–Voronoi mi-
crostructure than in the grain growth microstructure,
since 13.5% of all faces are triangular in the former and
only 4.3% are triangular in the latter [14]. However, this
fails to account for differences with respect to heptag-
onal faces. Whereas 11.6% of faces are heptagonal for
the Poisson–Voronoi microstructure, the corresponding
frequency is 8.4% for the grain growth case. Although
these frequencies differ by less that 50%, almost all of the
most frequent p-vectors in the Poisson–Voronoi structure
have some heptagonal faces, whereas none of those in the
grain growth structure have. This large difference cannot
be accounted for by the difference in the frequencies of
heptagonal faces alone.
A second and perhaps more striking difference be-

tween the structures is the manner in which p-vectors
are distributed. In the grain growth microstructure, the
eight most common p-vectors account for almost 15% of
all grains, while they account for less than 2.5% in the
Poisson–Voronoi case. Since the process of normal grain
growth drives the reduction in grain boundary area per
unit volume, this favors more equiaxed grains. Presum-

FIG. 2. Two topologically distinct grains that share p-vector
(00222200...). In the first, two triangular faces are connected
by an edge, whilst in the second they are not.

ably, this is achieved more readily with certain combina-
tions of polygons on the surfaces of grains than others,
leading to the observed selectivity of the grain growth
process.

Although a p-vector offers a more refined description
of a grain than a mere count of its faces, it too is in-
complete. Consider that a fixed set of polygonal tiles
can be arranged on the boundary of a grain in multiple
topologically-distinct ways. Figure 2 illustrates two such
distinct grains which share a p-vector.

A complete characterization of three-dimensional grain
topology can be built on Weinberg’s work [15, 16] on de-
termining if two triply-connected planar graphs are iso-
morphic. He introduced an encoding of the topological
structure of such graphs into a vector of integers and
showed that the two graphs are isomorphic if and only
if these vectors are identical. We employ this approach
to encode the topology of each grain and use these to
catalogue distinct topological types and their frequencies
in various microstructures.

The first step is to reduce a three-dimensional grain
topology to a vertex-edge planar graph—a Schlegel dia-
gram [17]—as shown in Fig. 3. The Schlegel diagram can
be constructed by projecting the polyhedron onto one of
its faces (the vertices which do not belong to that face lie
inside the face onto which the polyhedron is projected).
This allows us to use “right turn” and “left turn” unam-
biguously when “traveling” along a path in the graph.
An initial vertex is chosen and assigned the label 1; that
label is appended to an initially empty vector. Next, one
of that vertex’s three adjacent edges is chosen and travel
begins along that edge. These rules are then followed:

1. When an unlabeled vertex is reached, label it with the
next largest unused integer, append that label to the
vector, and then “turn right” and continue traveling
in the graph.

FIG. 3. A typical grain and a corresponding Schlegel diagram
(the embedding of the vertex-edge graph in the plane).
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FIG. 4. Vertices are labeled as they are initially encountered
while traversing the graph following rules (1) and (2); the
vector lists all vertices in the order in which they have been
visited.

2. When a previously-labeled vertex is reached, append
its label to the vector and then:

(a) If this vertex is reached by traveling along an edge
that has not been traversed, return to the previ-
ous vertex along the same edge but in the opposite
direction.

(b) If this vertex is reached by traveling along an edge
that has been traversed (in the opposite direc-
tion), “turn right” and continue traveling; if that
right-turn edge has previously been traversed in
that direction, “turn left” and continue traveling;
if that left-turn edge has also been traversed, stop.

Fig. 4 illustrates the process of constructing a vector
for the graph of a typical grain. An initial vertex and
edge are chosen, and a path through the graph is followed
according to rules (1) and (2); vertices are labeled in the
order they are visited. The vector for this particular path
in the grain is 1234145616265354321.
When we stop, each edge has been traversed exactly

once in each direction; each vertex has been visited ex-
actly three times (starting/ending vertices are visited
four times). The path through the graph is recorded
as a vector of vertex labels. This vector depends only on
the topological structure of the grain and on the choice
of initial vertex and edge, but not on any prior labeling
of the vertices.
Other vectors for a grain are produced by repeating

this procedure for other initial vertices and initial edges,
and likewise for the mirror image of the grain. This pro-
cedure yields 4E vectors for each graph with E edges;
each vector is a list of 2E+1 integers. Because the grain
topology can be reconstructed from any of the vectors,
we need only record one vector per grain. We call the lex-
icographically (numerical/alphabetical order) first vector
the Weinberg vector of the grain.
Although 4E vectors are constructed for each grain,

vertex-edge graphs containing mirror and rotational sym-
metries will have fewer unique ones. The order S of the
symmetry group associated with a grain is the number
of total vectors divided by the number of unique vectors.
The grain in Figs. 3 and 4 contains E = 9 edges and only

3 unique vectors; hence, the order of its symmetry group
is S = 4E/3 = 12.

Schlegel diagrams associated with the eight most com-
mon Weinberg vectors in the Poisson–Voronoi and grain
growth microstructures are shown in Fig. 5, along with
the associated number of faces F , the p-vector, the order
S of the symmetry group, and their frequencies f ; the
corresponding Weinberg vectors are listed in Tables SII
and SIII of the Supplementary Material.

As noted with respect to the p-vectors, the distribu-
tion of Weinberg vectors is much more concentrated in
the grain growth microstructure than in the Poisson–
Voronoi one. The eight most common Weinberg vectors
account for more than 13.5% of all grains in the grain
growth microstructure, but account for less than 1.35%
in the Poisson–Voronoi case. Since this difference is more
pronounced than for the p-vectors, it is clear that Wein-
berg vectors encode more precisely the types of grains
favored by grain growth than is possible using just the
number of edges around the faces of a given grain (p-
vector information). Indeed, a Weinberg vector specifies
both the populations of these polygonal faces and their
relative arrangement. Since normal grain growth results
frommean curvature flow, it drives the microstructure to-
wards grains with smaller surface-to-volume ratios than
in the Poisson–Voronoi microstructure. Consider a soc-
cer ball with 12 pentagonal and 20 hexagonal faces. If the
pentagonal faces were all mutually adjacent, the soccer
ball would more likely be elongated and possess a larger
surface-to-volume ratio. However, grain growth drives
the evolution of topology towards arrangements of faces
in which pentagonal faces are separated, thus allowing
for smaller surface-to-volume ratios. While p-vectors do
not capture this tendency, Weinberg vectors do.

To further highlight the role that Weinberg vectors
play in refining p-vector data, consider the most com-
mon p-vector (001343100...) in the Poisson–Voronoi mi-
crostructure, which accounts for almost 0.4% the grains.
The results in Fig. 5 and in Tables SII and SIII show that
none of the frequently occurring Weinberg vectors share
this p-vector. How is this possible? This p-vector can
occur in the Poisson–Voronoi microstructure in 38 topo-
logically distinct forms! While some of these Weinberg
vectors appear over 100 times in the Poisson–Voronoi
microstructure, others appear only once, if at all; such
an acute disparity between the most and least frequent
topological realization of this p-vector can also be found
in grain growth microstructures. This further illustrates
that the p-vector alone cannot predict the frequency of a
given topological type.

Figure 5 and Tables SII and SIII also indicate the or-
ders of the symmetry groups of the most frequent grain
topologies. A cursory examination reveals that the most
frequent grain topologies in grain growth microstructures
are substantially more symmetric than the corresponding
ones for Poisson–Voronoi microstructures. This observa-
tion is made more quantitative in Fig. 6. Consider the
probability of a randomly selected grain having a partic-



4

Poisson–Voronoi

P1, f=0.28%

(00133200...)
F=9, S=1

P2, f=0.17%

(00133100...)
F=8, S=2

P3, f=0.15%

(00044200...)
F=10, S=2

P4, f=0.13%

(00134110...)
F=10, S=1

P5, f=0.13%

(00044100...)
F=9, S=4

P6, f=0.10%

(00052200...)
F=9, S=4

P7, f=0.10%

(00142210...)
F=10, S=1

P8, f=0.10%

(00125200...)
F=10, S=2

Grain growth

G1, f=2.83%

(0004400...)
F=8, S=8

G2, f=1.86%

(0003600...)
F=9, S=12

G3, f=1.63%

(0004410...)
F=9, S=4

G4, f=1.53%

(0004420...)
F=10, S=2

G5, f=1.48%

(0005200...)
F=7, S=20

G6, f=1.43%

(0003610...)
F=10, S=6

G7, f=1.39%

(0013300...)
F=7, S=6

G8, f=1.38%

(0013320...)
F=9, S=1

FIG. 5. Schlegel diagrams of the 8 most common grain topologies (Weinberg vectors) in the Poisson–Voronoi and grain growth
microstructures. Listed for each topological type is a label, the frequency of occurrence f , the p-vector, the number of faces
F , and the order S of the associated symmetry group. The Weinberg vectors are tabulated in Tables SII and SIII of the
Supplementary Material.

 0.1

 1

 10

 100

 1000

 1  10  100

f S G
G
 /

f S P
V

Order of symmetry group, S

FIG. 6. A log-log plot of the ratio of the frequencies of grains
with a given symmetry group order S (≤ 120) from the grain
growth microstructures fS

GG and Poisson–Voronoi microstruc-
tures fS

PV . Note that the statistical errors for S = 3, 32, 48,
and 120 all exceed 30% because of their extreme rarity in the
microstructures.

ular symmetry order. The ratio of these probabilities
for the grain growth and Poisson–Voronoi microstruc-
tures is plotted as a function of the order of the sym-
metry group in Figure 6 and summarized in Table SIV
of the Supplementary Material. These results show that
complete grain topology and the frequencies of the or-
der of symmetries provide an outstanding tool for dis-
tinguishing between different cellular microstructures; in
the present case, the differences between the relative fre-
quencies of highly symmetric grains in the grain growth
and Poisson–Voronoi microstructures can be as large as
a factor of 100. That is, highly symmetric grains are sub-
stantially more common in the grain growth microstruc-

ture. Equally interesting is that the ratio between the
probability that a grain has a particular symmetry order
S in the grain growth and Poisson–Voronoi microstruc-
tures increases rapidly with S; the roughly straight curve
that passes through the data points in Fig. 6 indicates
that this ratio fS

GG
/fS

PV
≈ S1.2 (we exclude data from

the fit for which the statistical error exceeds 25% - i.e.,
S = 3, 32, 48, and 120).

As with the relatively stronger selection for certain p-
vectors and Weinberg vectors in the grain growth mi-
crostructures than in the Poisson–Voronoi microstruc-
tures, the difference in the symmetry of the grains may
have its origin in the energy-minimizing process of mean
curvature flow which is associated with grain growth.
While a spherical grain shape minimizes its surface area-
to-volume ratio and is favored by mean curvature flow
[18], grains in a cellular network must fill space, and
so their faces must be polygonal. Nevertheless, just as
curvature flow drives towards geometrically symmetric
spheres, we suggest that it also drives towards topolog-
ically symmetric polyhedra, as seen in the grain growth
microstructures.

We have introduced an efficient method to completely
classify grain topologies and have applied this method,
along with p-vectors, to investigate some differences be-
tween Poisson–Voronoi and grain growth microstruc-
tures. The grain growth microstructure has been ob-
served to strongly favor certain highly symmetric grain
topologies relative to the Poisson–Voronoi microstruc-
ture. The availability of a complete topological charac-
terization of individual cells in such cellular microstruc-
tures has proven to be an ideal tool for distinguish-
ing between fundamental characteristics of different mi-
crostructures. The distribution of the orders of symmetry
of grain topologies, in particular, provides a strong and
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