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We derive general analytical expressions relating the equilibrium fluctuations of a grain boundary
to key parameters governing its motion coupled to a shear deformation. We validate these expres-
sions by molecular dynamics simulations for symmetrical tilt boundaries and demonstrate how they
can be used to extract the misorientation dependence of the grain-boundary mobility. The results
shed light on fundamental relationships between equilibrium and nonequilibrium grain-boundary
properties and provide new means to predict those properties.

PACS numbers:

Grain boundaries (GBs) strongly influence properties
of a wide range of polycrystalline materials [1, 2]. In
models of mechanical behavior, GBs are often treated as
“static” geometrical obstacles to dislocation motion. This
role underlies for example the classic Hall-Petch relation-
ship predicting increased strength with decreasing grain
size. However, GBs can also move in response to applied
stresses. There is a growing recognition that such a mo-
tion can both influence mechanical behavior of materials
and drive grain coarsening by an entirely different process
than reduction in GB free energy [3–6].

The key property responsible for the GB interaction
with stress is the existence of coupling between normal
GB motion and shear deformation parallel to the GB
plane [3, 4, 7, 8]. This coupling is characterized by a
linear relation,

β = v||/vn, (1)

between the normal GB velocity vn and the velocity v||
of parallel grain translation. In the case of pure coupling,
the coupling factor β depends only on GB bicrystallog-
raphy. At high temperatures approaching the melting
point, many GBs lose their coupling ability and the two
velocities become uncorrelated. Due to the coupling ef-
fect, a shear stress σ applied parallel to the GB induces
its normal motion. At relatively high temperatures vn
can be assumed to be proportional to the driving force
F for this motion, or vn = MnF where Mn is the GB
mobility. Equating the rate of work done by the shear
stress per unit GB area, σv‖, to the rate of free energy
dissipation by normal motion, vnF = v2n/Mn, and using
the coupling relation (1), yields

vn = Mnβσ. (2)

Both atomistic simulations [3, 4, 7–9] and experiments
[10–12] support the basic theoretical model of coupling.
However, a comprehensive understanding of this effect,
and the ability to predict pure coupled motion, pure slid-
ing, or a mix of both behaviors, are still lacking. Even for

pure coupling, predicting the coupling factor and mobil-
ity remains a challenge. While for symmetrical tilt GBs
the misorientation dependence of β can be analytically
predicted by geometric analysis [4], more recent work
[13] shows that geometry alone is insufficient for predict-
ing the coupling relation for more general, asymmetri-
cal GBs. Furthermore, molecular dynamics (MD) sim-
ulations are generally limited to very large strain rates,
making it difficult to reliably extrapolate computational
predictions of Mn and β to experimental conditions.

One route to address these issues is to exploit the
analysis of GB shape fluctuations to extract equilibrium
and non-equilibrium GB properties from statistical av-
erages and fluctuation-dissipation relations. While this
approach is well-developed for other types of interfaces
such as surfaces [14] and rough crystal-melt interfaces
[15–17], its application to GBs is less developed. Pre-
vious MD studies [18, 19] reported that some GBs, but
not others, exhibited fluctuations of the interface height
h(x) =

∑

k A(k)e
ikx that were well-described by the

standard relation derived from equipartition of energy
among the independent Fourier modes,

〈|A(k)|
2
〉 =

kBT

S (γ + γ′′) k2
, (3)

where the interface stiffness (γ + γ′′) is the sum of the
interfacial free energy γ and its second derivative with
respect to orientation of the interface normal, and S =
LzLx is the GB area assumed to have a ribbon-shape of
length Lx much larger than its width Lz. Experimen-
tal studies of GB fluctuations in two-dimensional col-
loidal crystals reported results consistent with Eq. (3)
[20]. However, previous analytical studies predicted that
〈|A(k)|

2
〉 ∼ 1/k in the limit of vanishing misorienta-

tion when dislocations are well separated [21, 22], which
makes the extent of validity of Eq. (3) unclear. In addi-
tion, the use of fluctuation analysis to extract GB mobil-
ities remains largely unexplored for coupled GB motion.

In this Letter we extend the analysis of GB fluctuations
to the pure coupling regime and derive relations allowing
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Figure 1: Upper: typical snapshot of MD simulation where
blue and green atoms in each grain are colored by the orien-
tation parameter [23] used to calculate the GB normal dis-
placement h(x) (red line). Lower: schematic plot of the flat
reference GB (black line) and a sinusoidal GB perturbation
(red line) with green arrows showing material displacements.

one to extract the coupling factor and GB mobility. We
also generalize the GB random walk approach [24] to ex-
tract the sliding mobility M‖ in the pure sliding regime
where v‖ = M‖σ. We present the results of MD sim-
ulations of high-temperature symmetrical tilt GBs that
validate our analytical results. The MD results also shed
new light on the transition from coupling to sliding and
the misorientation dependence of mobility.

We first derive the equilibrium fluctuation spectrum
analogous to Eq. (3) but for a perfectly coupled GB. We
consider a wavy perturbation of a ribbon-shaped GB in
the form h(x) = a(k) cos(kx), where the x (y) axis is
chosen parallel (normal) to the unperturbed GB plane
lying at y = 0 and z is along the tilt axis as depicted
in Fig. 1. The coupling relation (1) implies that the
wavy perturbation must cause the crystal lattices of each
grain to translate in opposite directions with respect to
each other at the peaks and troughs of the perturbed
GB (green arrows in Fig. 1), generating elastic strains
inside the grains. The problem of computing the GB fluc-
tuation spectrum thus reduces to computing the elastic
energy E(k) of the strain field created by the wavy per-
turbation. We outline here the calculation of E(k) for an
elastically isotropic material and then state the result for
cubic crystals. Details of both calculations are given in
the online supplemental material [23]. The elastic energy
density has the form

E = λu2
ii/2 + µuijuij , (4)

where λ and µ are the two Lamé coefficients and uij =
(∂iuj + ∂jui) /2 is the small-strain tensor. The usual
summation convention is implied. We denote by ~u+(x, y)
and ~u−(x, y) the displacement fields in the regions above
(y > 0) and below (y < 0) the unperturbed GB, respec-

tively. These fields obey the elastostatic equation

∇2~u± +
1

1− 2ν
~∇
(

~∇ · ~u±
)

= 0, (5)

where ν is Poisson’s ratio and (µ + λ)/µ = 1/(1 − 2ν).
When broken down into x and y components, Eq. (5)
yields two coupled scalar equations for u±

x and u±
y that

must be solved in the regions y > 0 (+) and y < 0 (−)
subject to several boundary conditions. These include
the coupling relation (1), which translates to (cf. Fig. 1)

u+
x (x, 0)− u−

x (x, 0) = βh(x) = βa(k) cos(kx), (6)

the continuity of the normal displacement field
u+
y (x, 0) = u−

y (x, 0), continuity of the normal σ+
yy(x, 0) =

σ−
yy(x, 0) and tangential σ+

xy(x, 0) = σ−
xy(x, 0) compo-

nents of the traction vector at the GB, and vanishing
displacement far from the GB in each grain u±

x (x,±∞) =
u±
y (x,±∞) = 0. In writing down the continuity relations,

we use the fact that it is equivalent to evaluate them at
the perturbed GB position y = h(x) and at y = 0 to
linear order. Solutions of Eq. (5) that satisfy all of the
above boundary conditions are found to be [23]

u±
x =

βa(k)

2

(

1∓
ky

2(1− ν)

)

e∓ky cos(kx), (7)

u±
y =

βa(k)

4(1− ν)
(1− 2ν ± ky) e∓ky sin(kx). (8)

Substituting these solutions into Eq. (4) and integrating
over the GB area yields the total elastic energy of the per-
turbation E(k) = SCβ2ka(k)2/4, where C = µ/[2(1−ν)]
is an effective elastic constant. Equipartition of energy
implies that E(k) = kBT/2, which together with the re-
lation between complex and real amplitudes 〈|A(k)|2〉 =
〈|a(k)|2〉/2 yields the final result [23]

〈|A(k)|
2
〉 =

kBT

SCβ2k
. (9)

An analogous calculation for a [001] tilt GB between cu-
bic crystals gives the same spectrum as Eq. (9) with [23]

C =
c11 + c12

2

√

c44 (c11 − c12)

c11 (c11 + c12 + 2c44)
, (10)

where c̄11, c̄12, and c̄44 are the elastic constants in Voigt
notation with the coordinate axes parallel to the crystal
axes, and where C turns out to be independent of the mis-
orientation θ. For isotropic elasticity (C = µ/[2(1− ν)])
and small misorientation (θ ≪ 1 and |β(θ)| ≈ θ) Eq. (9)
reduces to the results of previous analyses where E(k)
was computed as the interaction energy of well separated
dislocations [21, 22]. However, it should be emphasized
that Eq. (9) holds for arbitrary β without any restric-
tion on misorientation under the sole assumptions that
the GB exhibits pure coupled motion via Eq. (1) and
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that the interface stiffness is sufficiently large to suppress
fluctuations linked to anisotropic interface energy.

Next, to compute the GB mobility we extend the
previous analyses of time-dependent interface fluctua-
tions [16, 18] and interface random-walk [24] that make
use of the fluctuation-dissipation theorem. Extensions
of those analyses to the pure coupling case can be
found in Ref. [23]. The results show that the mobil-
ity can be extracted from computing the decay time
τ(k) of the auto-correlation function 〈A(k, t)A∗(k, t′)〉 =
〈|A(k)|2〉e−|t−t′|/τ(k), together with

Mn =
S〈|A(k)|2〉

τ(k)kBT
. (11)

The GB mobility can also be obtained by measuring the
Brownian-like random walk of the average GB displace-
ment h̄(t) = (1/Lx)

´ Lx

0
h(x, t)dx, with

〈

h̄2(t)
〉

= (2MnkBT/S) t. (12)

To validate the above analytical predictions, we car-
ried out MD simulations of [001] symmetrical tilt GBs
in Cu with atomic interactions modeled with the same
embedded-atom potential [25] as in previous studies of
coupled GB motion [4, 8, 9]. The simulation geometry
consisted of a bicrystal with the tilt axis aligned with
the z-axis and the GB plane perpendicular to the y-
axis as in Fig. 1. Periodic boundary conditions were en-
forced in the x- and z-directions and free surfaces in the
y-direction, allowing the grains to freely translate par-
allel to the GB. The simulation block dimensions were
Lx ≈ 1200 Å, Lz ≈ 14.8 Å, and Ly ≈ 1140 Å with ap-
proximately 1.6 × 106 atoms. Prior to MD simulations,
the ground-state GB structure was obtained using the
methods described in [4]. The MD runs were about 5 ns
long and implemented the canonical (NVT) ensemble at
the temperature of 1200 K controlled by a Nose-Hoover
thermostat.

To explore GB fluctuations in both the coupling and
sliding regimes, we studied a wide enough range of tilt
angles, 5.72◦ ≤ θ ≤ 38.67◦, to encompass both regimes
according to the previous work [4]. We define θ as mis-
orientation between [110] directions in the grains rather
than [100] as in Ref. [4]. For the lowest angle studied
here, the GB is composed of cleanly separated 1/2〈110〉
dislocations, whereas at the largest angle it represents the
Σ5(210) GB. The chosen misorientation range lies within
the 〈110〉 branch of coupling where the geometrically pre-
dicted “ideal” coupling factor is β(θ) = −2 tan(θ/2).

Fig. 2 demonstrates that the fluctuation spectrum
obeys the 1/k behavior predicted by Eq. (9) remarkably
well for the range of θ corresponding to pure coupling.
In contrast, for the θ = 38.67◦ misorientation which
is expected to exhibit pure sliding at this temperature
[4], the spectrum follows the 1/k2 scaling law and a fit
to Eq. (3) yields the physically reasonable GB stiffness

102

103

104

105

106

10−2 10−1

   
   
P
 =
 S
   〈|
A
(k
)|
2 〉
 (
Å
4 )

k (1/Å)

36.87°
22.62°
12.68°
5.72°

0.000

0.002

0.004

0.00 0.01 0.02

1/
P

k (1/Å)

Figure 2: Power spectrum of GB fluctuations as a function of
k. Lines with slopes −1 (solid) and −2 (dashed) are shown for
reference. Inset: Inverse power spectrum of GB fluctuations
as a function of k with least-square linear fits to the initial
part of the spectrum passing through the origin.
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Figure 3: Lower data: Comparison of Sk〈|A(k)|2〉 from MD
(circles) with the prediction of Eq. (9) kBT/(Cβ2) (solid line)
plotted versus |β(θ)| = 2 tan(θ/2). The grey box is the region
of divergence from the prediction due to the coupling-sliding
transition. Upper data: Comparison of coupling factors com-
puted from random walk (∇) and stress-driven MD (△) with
the geometric prediction 2 tan(θ/2) (solid line).

(γ + γ′′) = 0.506 J/m2. The latter finding is consistent
with the fact that, in the absence of coupling, GB fluc-
tuations are governed by the energetic cost of creating
addition GB area with orientations close to the unper-
turbed GB plane. Fluctuation spectra for θ in between
the pure coupling and pure sliding regimes exhibit more
complex variations with k without unique scaling [23].

The cross-over from coupling to sliding is further ex-
amined in Fig. 3 where the MD results for Sk〈|A(k)|2〉
are compared to kBT/(Cβ2) predicted from Eq. (9) with
C computed from Eq. (10) using values of the elastic con-
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Figure 4: Typical plots of GB displacement h̄(t) versus grain
translation X(t) during equilibrium random walk MD simu-
lations. The line segments have the slope of the ideal cou-
pling factors to guide the eye. At θ = 38.67◦ the trajectory
represents uncorrelated random walk. The inset shows that
the Pearson correlation coefficient between h̄(t) and X(t) is
close to unity (perfect correlation) in the coupled regime and
rapidly declines due to the coupling-sliding transition.

stants at 1200 K [23]. A good quantitative agreement is
found for pure coupling. The MD values depart from the
theoretical prediction at θ & 25◦ when the sliding com-
ponent becomes significant. Fig. 3 also shows the cou-
pling factors evaluated by two different methods: (i) from
v‖/vn in stress-driven simulations as in Refs. [4, 7], and
(ii) from linear regression between the normal GB dis-
placement h̄(t) and the relative tangential translation of
grains X(t) during a random walk simulation. As phys-
ically expected, in the coupling regime both calculations
give results very close to the ideal β. When sliding be-
comes significant, v‖/vn extracted from stress-driven sim-
ulations overshoots the ideal β because part of the grain
translation velocity is now due to sliding. Fig. 4 demon-
strates that h̄(t) and X(t) are strongly correlated in the
coupling regime, with the regression coefficient close to
β, but the correlation weakens at θ & 25◦ when coupling
gradually transforms to sliding. When coupling disap-
pears (θ = 38.67◦), the GB performs two uncorrelated
random walks in h̄(t) and X(t).

Fig. 5 summarizes the GB mobilities computed by
three different methods: (i) from the GB shape fluctua-
tions using Eq. (11), (ii) from the GB random walk using
Eq. (12), and (iii) from stress-driven GB motion using
Eq. (2). The first two equilibrium methods give consis-
tent results as expected. The stress-driven Mn, which
is the least accurate, tends to overestimate the mobil-
ity because very large velocities (5 m/s) were applied to
create shear stresses distinguishable from thermal noise.
This deviation highlights the importance of measuring
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Figure 5: GB mobility Mn computed by three different meth-
ods as a function of misorientation. The lower curves are plots
of 2Mn sin(θ/2)/ cos2(θ/2) expected to be constant.

GB mobility near equilibrium and avoid unrealistically
large driving pressures as discussed in [2, 26]. Fig. 5 also
shows that the mobility increases with decreasing mis-
orientation, as was theoretically expected [3] and seen
in previous MD studies [27]. Furthermore, our results
confirm the relation 2Mn sin(θ/2)/ cos

2(θ/2) = const ex-
pected assuming the conservation of dislocation content
of GBs [23]. In the pure sliding regime we can also
compute the sliding mobility either from M‖ = v‖/σ
or using the random walk method giving the formula
〈X(t)2〉 = (2M‖kBT/S)t [23]. For the θ = 38.67◦ GB
these two calculations give M‖ = 9.1×10−8 m4/(Js) and
M‖ = 6.4 × 10−8 m4/(Js), respectively, again highlight-
ing the importance of near equilibrium measurements of
mobility.

While the present work elucidates the fundamental link
between GB fluctuations and linear response to shear for
the pure coupling and pure sliding regimes, the transition
between those regimes warrants further study.
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