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We describe a new mechanism of tunneling between period-two vibrational states of a weakly non-
linear parametrically modulated oscillator. The tunneling results from resonant transitions induced
by the fast oscillating terms conventionally disregarded in the rotating wave approximation (RWA).
The tunneling amplitude displays resonant peaks as a function of the modulation frequency; near
the maxima it is exponentially larger than the RWA tunneling amplitude.

PACS numbers: 03.65.Xp, 42.50.Pq, 74.78.Na, 05.60.Gg

Many systems of current interest can be modeled by
modulated nonlinear quantum oscillators. Examples
range from Josephson junction based systems [1] to opti-
cal cavity modes [2], electrons in a Penning trap [3], and
opto- and nano-mechanical systems [4]. The oscillator
dynamics is often characterized by well-separated time
scales: the reciprocal eigenfrequency ω−10 and a much
longer time related to the vibration decay and nonlinear-
ity. A standard approach to the analysis of the dynam-
ics is based on the rotating wave approximation (RWA),
where one separates slow variables, like the vibration am-
plitude and the slow part of the phase, and disregards the
effect of fast oscillating terms on their evolution.

An important quantum effect in modulated systems
is dynamical tunneling [5]. It can be understood for a
parametric oscillator, which is excited by modulation at
frequency ωF close to 2ω0. Classically, a weakly nonlinear
oscillator can have two states of vibrations at frequency
ωF /2, which have the same amplitudes and differ in phase
by π [6]. Quantum fluctuations cause tunneling between
these states [7, 8]. Similar tunneling, which should be
distinguished from dissipative switching [9, 10], is known
also for other types of vibration bistability [11].

In this paper, we show that the tunneling rate of
a parametrically modulated oscillator can be exponen-
tially increased by processes caused by the fast oscillating
terms ∝ exp(±inωF t), (n = 1, 2, . . .) disregarded in the
RWA. This happens where the difference of the appropri-
ate eigenvalues of the RWA Hamiltonian becomes close
to n~ωF . The level configuration is of Λ-type. The two
lowest RWA levels are degenerate (disregarding tunnel-
ing), with the wave functions localized near the period-
two vibrational states, whereas the upper-level state is
delocalized, see Fig. 1. The three states are resonantly
mixed by the fast-oscillating non-RWA terms. The asso-
ciated breakdown of the RWA is a purely quantum effect
with no classical counterpart.

The tunneling enhancement we consider is somewhat
reminiscent of photon-assisted tunneling from a poten-
tial well, which is now broadly used in quantum infor-
mation processing [12]. There photon absorption reso-
nantly accelerates tunneling decay if the photon energy

FIG. 1. (a) The dimensionless RWA Hamiltonian g(Q,P ),
Eq. (3), for µ = 0.95. The minima of g(Q,P ) correspond to
the parametrically excited vibrational states, in the presence
of weak dissipation. (b) The cross-section g(Q,P = 0) with
a sketch of RWA quasienergy levels; the arrows indicate reso-
nant transitions due to the fast-oscillating corrections to the
RWA. Also indicated are the typical energy scales.

~ωF coincides with the intrawell level spacing, since the
decay rate of the excited state largely exceeds that of the
ground state. In contrast to systems displaying photon-
assisted tunneling, a parametric oscillator is bistable due
to the modulation, which forms the very barrier for tun-
neling in phase space. This leads to a different physics
and requires a different description.

We study moderately strong resonant modulation
where the nonlinear part of the oscillator vibration en-
ergy remains small compared to the harmonic part. This
makes the oscillator different from modulated strongly
nonlinear systems where much attention has attracted
chaos-assisted [13] and nonlinear resonance-assisted tun-
neling [14], see Supplemental Material.

For the rate of tunneling between the vibrational states
to be small, the effective RWA tunneling barrier ∆U
should largely exceed the RWA level spacing ~ωsl; fre-
quency ωsl characterizes the oscillator dynamics in the
rotating frame, ωsl � ωF ≈ 2ω0. The ratio ∆U/~ωF can
be arbitrary, it does not emerge in the RWA. We will be
interested in the case where ∆U ∼ ~ωF . In this case the
effect of resonant admixture of the RWA states by the
non-RWA interaction, is most pronounced, see Fig. 1.
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For ωF � ωsl, the states resonantly mixed by the non-
RWA terms in the oscillator Hamiltonian overlap very
weakly. We develop a method that allows us to calculate
the relevant exponentially small matrix elements and to
show that they are nevertheless sufficiently large to lead
to exponential resonant enhancement of tunneling.

The Hamiltonian of a parametrically modulated oscil-
lator with coordinate q, and momentum p reads

H(t) =
p2

2
+

1

2
q2[ω2

0 + F cos(ωF t)] +
γ

4
q4 . (1)

We assume that the modulation amplitude F and the
nonlinearity are comparatively small, F, γ〈q2〉 � ω2

0 ,
and the modulation frequency ωF is close to resonance,
|ωF − 2ω0| � ω0; for concreteness we set F, γ > 0. Of
primary interest is the range of the modulation parame-
ters F and ωF where, in the presence of weak damping,
the oscillator has two almost sinusoidal stable classical
vibrational states with frequency ωF /2 [6].

To study the oscillator dynamics, we switch to the
rotating frame using a standard transformation U(t) =
exp[−iωF â†ât/2] and introduce dimensionless slow vari-
ables Q and P , U†qU = C [P cosωFt/2−Q sinωFt/2]
and U†pU = −(ωF /2)C [P sinωFt/2 +Q cosωFt/2].
Here â and â† are the ladder operators and C =
(2F/3γ)1/2. The Hamiltonian in the rotating frame

H̃ = U†HU − i~U†U̇ reads

H̃ = (F 2/6γ)[g(Q,P ) + h(Q,P, t)]. (2)

The dimensionless operator

ĝ =
1

4

(
Q2 + P 2

)2
+

1

2
(1− µ)P 2 − 1

2
(1 + µ)Q2 (3)

is independent of time [8]. In contrast, the operator

ĥ = h1(Q,P )e−iωF t + h2(Q,P )e−2iωF t + H.c.

is fast oscillating; h1,2 are fourth order polynomials in
Q, P , they do not contain small parameters and are
given explicitly in the Supplemental Material. Functions
g(Q,P ) and h(Q,P ) are symmetric with respect to inver-
sion (Q,P ) → (−Q,−P ) due to the periodicity of H(t).
They depend on a single dimensionless parameter µ,

µ = [(ωF /2)− ω0] /ωsl, ωsl = F/2ωF . (4)

We disregard corrections ∼ ωsl/ωF .
The commutation relation for the dimensionless coor-

dinate Q and momentum P is

[Q,P ] = iλ, λ = 3γ~/(FωF ), (5)

where λ is the dimensionless Planck constant. We assume
that λ � 1. Then quantum fluctuations are small on
average.

From Eq. (2), the Schrödinger equation in dimension-

less time τ = tωsl is iλ∂τΨ = (ĝ + ĥ)Ψ. Since ĥ is
periodic in time, this equation has Floquet solutions

Ψε(τ + τh) = exp(−iετh/λ)Ψε(τ). They define the di-
mensionless quasienergies ε [τh = 2πωsl/ωF � 1].

In the RWA the fast oscillating term ĥ is disregarded.
Then operator H̃ becomes time-independent. The di-
mensionless Hamiltonian g(Q,P ), Eq. (3), is shown in
Fig. 1. It is not a sum of the kinetic and potential en-
ergy. For |µ| < 1, g(Q,P ) has two symmetrically lo-
cated minima, gmin = −(1 + µ)2/4, and a saddle point,
gS = 0. In the presence of weak dissipation, the min-
ima correspond to the period-2 vibrational states in the
laboratory frame, which have equal amplitude and op-
posite phase. The barrier height between the states is
∆U = (F 2/6γ)(gS − gmin).

The eigenvalues gm of ĝ give dimensionless quasiener-
gies εm in the RWA. For λ � 1 each well of g(Q,P ) in
Fig. 1 contains many levels, ∝ 1/λ. Because the wells are
symmetric, the intrawell states are degenerate in the ne-
glect of tunneling. With account taken of tunneling, the
eigenstates ψn(Q) of ĝ are even or odd in Q, and index n
is used to enumerate these exact eigenstates. The dimen-
sionless RWA tunnel splitting δg0 between the lowest-g
states was considered earlier [7, 8]. It is exponentially
small, | log δg0| ∝ 1/λ, and δg0 oscillates with µ/λ [8].

The oscillating term ĥ in the Hamiltonian (2) mixes
RWA-eigenstates. For remote states the mixing is ex-
ponentially weak. However, it may become important
where ~ωF is close to the distance between the RWA lev-
els, as it provides a new route for interwell transitions.
Consider state ψn above the barrier top with dimension-

less quasienergy gn and the two lowest states ψ
(l)
0 and ψ

(r)
0

in the left and right wells of g(Q,P ) with quasienergy g0
in the neglect of tunneling, see Fig. 1(b). The dimension-
less detuning between the interlevel distance and ~ωF
is ∆ = λ−1(gn − g0) − (ωF /ωsl). If |∆| � 1, transi-

tions ψ
(l,r)
0 → ψn are resonant. The matrix elements

〈ψn|h1|ψ(l)
0 〉 and 〈ψn|h1|ψ(r)

0 〉 are equal for a symmet-
ric ψn(Q) or have opposite signs for an antisymmetric
ψn(Q); we denote their absolute value by hres. The am-

plitudes of resonantly coupled states ψn(Q), ψ
(l,r)
0 (Q) os-

cillate at dimensionless frequencies

ν± = [(∆2 + 8λ−2h2res)
1/2 ± |∆|]/2. (6)

From Eq. (6), ν± ≈
√

2hres/λ for good resonance,
λ|∆|/hres � 1. In the dispersive regime, λ|∆|/hres � 1,
interwell oscillations are characterized by frequency ν− ≈
2h2res/λ

2∆. As we show, in both cases ν− can be expo-
nentially larger than the dimensionless RWA tunneling
frequency δg0/λ, which was disregarded in Eq. (6).

The relevant matrix elements of ĥ can be found using
the WKB approximation, in the spirit of Ref. 15. In-
terestingly, taking advantage of the conformal property
of classical trajectories for the effective Hamiltonian ĝ,
one can find both the exponent and the prefactor in the
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matrix elements. For the term ∝ h1 in ĥ we write

〈ψn|ĥ1|ψ0〉 = 2Re

∫ ∞
0

dQh+(Q),

h+(Q) = ψ+
n (Q)ĥ1ψ0(Q), (7)

where ψ0(Q) is one of the two tunnel-split lowest-g states

[the symmetric or antisymmetric combination of ψ
(l)
0 (Q)

and ψ
(r)
0 (Q) ]; ψn(Q) has the same parity as ψ0. Here we

provide results for underbarrier states, gn < gS = 0; for
gn > 0 the analysis is similar, see Supplemental Material.

Function ψ+
n (Q) is an eigenfunction of operator ĝ such

that Re[ψ+
n (Q)] = ψn(Q) and, in the classically accessible

region of the semiaxis Q > 0, see Fig. 1,

ψ+
n (Q) ≈ cn (∂P gn)

−1/2
exp

(
iλ−1Sn(Q) + iπ/4

)
. (8)

Here, Sn(Q) =
∫ Q
aR(gn)

P (Q′, gn)dQ′ is the mechanical

action counted off from the right turning point aR(gn)
and P (Q, g) is the classical momentum,

P (Q, g) =

√
µ− 1−Q2 + 2

√
g − gmin − µ+Q2. (9)

In Eq. (8) ∂P gn is ∂P g calculated for P = P (Q, gn) and

cn = [τ
(1)
p (gn)/2]−1/2, where τ

(1)
p (g) is the period of clas-

sical vibrations with quasienergy g.
We shift the integration path in Eq. (7) to the upper

half-plane, contour C in Fig. 2 (a). On this contour [15]

h+≈ [cnc0h1(Q,−P (Q, g0))/2
√
∂P gn∂P g0]

× exp {i [Sn(Q)− S0(Q)] /λ} . (10)

We then change from integration along C to integration
along the semicircle Carc at |Q| → ∞, Im Q > 0, and
contour C′ that for µ < 0 goes above the real axis from
−∞ to Q = +0 around the branch cut on the imaginary
axis, see Fig. 2 (a). We use that the classical trajecto-
ries Q(τ ; g) for the Hamiltonian g(Q,P ) are expressed in
terms of the Jacobi elliptic functions [8]. For each g, this
expression provides conformal mapping of the half-plane
Im Q > 0 (with a branch cut) onto a g-dependent region
on the plane of complex time τ . We define τ(Q, g) as the
duration of classical motion from the turning point aR(g)
to Q. Then, for µ < 0 the region on the τ -plane that cor-
responds to the half-plane Im Q > 0 is the interior of a
rectangle shown in Fig. 2 (b).

Using that τ(Q, g) = ∂S/∂g, we write the exponent in
Eq. (10) as

i

λ
[Sn(Q)− S0(Q)] =

i

λ

∫ gn

g0

dgτ(Q, g) . (11)

As seen in Fig. 2 (b), for any Q on contour Carc and any
Q′ on contour C′, Im τ(Q, g) < Im τ(Q′, g). Therefore
the integral along C′ can be disregarded.

On contour Carc τ(Q, g) is given by the position of the
pole τ∗(g) of function Q(τ ; g) [8], whereas from Eqs. (3)
and (9) and the expression for h1

(
Q,−P (Q, g0)

)
(see

FIG. 2. (a) The contour of integration C for calculating the
matrix element (7) in the WKB approximation and the auxil-

iary integration contours for µ < 0; aB(g) = i(g−gmin−µ)1/2
is the branching point of P (Q, g). (b) Mapping of the half-
plane Im Q > 0 (with a branch cut) on the interior of a
rectangle on the τ -plane for µ < 0 by function Q(τ ; g) that
describes the classical Hamiltonian trajectory with given g;

τ
(1)
p , τ

(2)
p , and τ∗ are the real and imaginary periods and the

pole of Q(τ ; g), respectively. The color coding is the same as

in (a). The lines C̃, C̃arc, and C̃′ are the maps of the corre-
sponding contours in (a). The green arc in the upper right
corner is the map of the axis Im Q from aB(g) to ∞; τB is

the time for reaching aB(gn). The blue line Im τ = Im τ
(2)
p /4

in (b) corresponds to the section of the Im Q axis in (a) that
goes from Im Q = 0 to Im Q = aB(g) < aB(gn). This part of
the Im Q axis is shown in blue.

Supplemental Material) the prefactor in h+ is ∝ 1/Q.

Then from Eq. (7) for hn0 ≡ 〈ψn|ĥ1|ψ0〉 we obtain

hn0 ≈
π

3
cnc0 exp

[
−λ−1

∫ gn

g0

dg Im τ∗(g)

]
. (12)

Equation (12) gives the matrix elements of the fast-
oscillating field h1 in the explicit form, including both
the exponent and the prefactor. The matrix elements of
h2 are exponentially smaller than those of h1 and can
be disregarded. Equation (12) is in excellent agreement
with numerical calculations, see Fig. 3, except for gn → 0,
since Eq. (8) must be modified for such gn. Numerically,
the error is . 10% for |gn|/λ(1 − µ2)1/2 & 1. Equation
(12) should also hold for not too large gn > 0, see Supple-
mental Material. This is fully corroborated by numerical
calculations as well.

Expression (12) determines the matrix element hn0 =

|hn0|/
√

2 in Eq. (6) for the interwell oscillation frequency.
One should compare the exponent in Eq. (12) with the
RWA tunneling exponent | ln δg0|. The latter is deter-
mined by action S0(−aR(g0)) for moving under the bar-
rier from one well of g(Q,P ) to the other [8]. By sym-
metry, it is given by twice the real part of Eq. (11) for
gn = 0 and Q = +0. From Fig. 2 (b), Im τ(0, g) =

Im τ
(2)
p (g)/4 > Im τ∗(g) for g < 0. Therefore for gn < 0

not only |hn0|, but also |hn0|2 are exponentially larger
than δg0. As shown in Supplemental Material, this rela-
tion holds also for µ > 0.

Of utmost interest for observing non-RWA tunneling
is resonance of ~ωF with states close to the barrier top
in Fig. 1. This is because the matrix element hn0 falls
down exponentially with increasing gn. On the other
hand, deep inside the wells of g(Q,P ), the splitting of
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FIG. 3. Left panel: the scaled tunnel splitting ν− = (ε1 −
ε0)/λ for the quasienergy states that maximally overlap with

the lowest-g states (ψ
(l)
0 ±ψ

(r)
0 )/
√
2 for µ = 0.95 and λ = 0.08

(for these parameters values, the ”direct” tunnel splitting is
δg0/λ ≈ 0.8×10−11). The quasienergies ε0,1 are obtained nu-
merically from the Schrödinger equation with the full Hamil-
tonian H(t). The dotted lines show a comparison of the peak
shapes with Eq. (12) for renormalized gn, hn0; the resonating
gn are near the barrier top in Fig. 1, with n = 14 for the
left peak. The dashed lines show the peaks calculated dis-
regarding the renormalization. Right panel: A comparison
of Eq. (12) for hn0 calculated as a continuous function of g
(the solid lines) with numerical calculations; the triangles and
crosses refer to symmetric and anti-symmetric states ψn. A
narrow vicinity of gn = 0 where expression (12) goes to zero

as | ln gn|−1/2 is not shown.

the symmetric and antisymmetric states becomes smaller
than hn0. Then it is this splitting that determines the
interwell tunneling; it largely exceeds δg0, but the effect
becomes small when the relaxation rate exceeds hn0.

For ~ωF ∼ ∆U one should take into account transi-

tions ψ
(l,r)
0 → ψn via intermediate states, which appear

in higher-order in ĥ. From Eq. (12), if the intermediate
states are arranged in the order of increasing quasiener-
gies, the resulting transition matrix elements have the
same exponent as hn0. Thus the corresponding virtual
processes just renormalize the prefactor in the resonant
tunnel splitting compared to Eq. (12). The shift of the

dimensionless quasienergy levels gn due to the term ĥ(t)
in the Hamiltonian is ∼ ωsl/ωF . It does not contain an
exponentially small factor, smoothly depends on n, and
largely exceeds hn0.

Figure 3 shows extremely sharp resonant peaks of the
splitting of quasienergy levels for ~ωF resonating with

the renormalized interlevel distance (F 2/6γ)(gn−g0). In-
stead of calculating this distance and the prefactor in hn0
to high order in ĥ we used them as adjustable parameters.

Even moderately weak relaxation modifies the inter-
well transitions if the oscillator decay rate Γ exceeds the
tunneling frequency ωslν−. We will consider the resonant
case, where the dimensionless decay rate κ = Γ/ωsl � 1

but κ� ∆. If κ� hn0/λ, resonant transitions ψ
(l,r)
0 →

ψn occur at dimensionless rate ∼ h2n0/λ
2κ. From the

resonantly excited state ψn the system drifts down in

quasienergy and approaches the states ψ
(l)
0 and ψ

(r)
0 with

equal probabilities. As a result, instead of tunneling the
system incoherently switches between the wells with rate
∼ h2n0/λ2κ, see Supplemental Material.

Relaxation leads to interwell switching on its own
via the mechanism of quantum activation [8, 10]. The
dimensionless switching rate is νQA ∼ κ exp(−RA/λ).
From the explicit form of the activation exponent RA
[8] and Eq. (12) it follows that, for T = 0, the rate
h2n0/λ

2κ is exponentially higher than the quantum ac-
tivation rate for µ & −0.35, if the resonant quasienergy
level is near the barrier top, |gn| . λ. For T exceed-
ing a small µ- and κ-dependent threshold value (still
T � ~ωF /2kB), RA becomes smaller than the leading-
order term in 2λ| lnhn0|. The difference between these
quantities quickly falls down with increasing µ, and for
realistic not too small λ and small quantum activation

prefactor κ, the ĥ-field induced switching may still dom-
inate at resonance.

In conclusion, we have found a new mechanism of tran-
sitions between coexisting vibrational states of a para-
metric oscillator. The transitions correspond to resonant
tunneling in a Λ-type configuration of quasienergy states
and come from the terms, which are conventionally dis-
regarded in the RWA. The transition amplitude is found
using the conformal mapping technique. It displays sharp
resonant peaks as a function of the modulation frequency
and at its maxima is exponentially larger than the RWA
tunneling amplitude. The peaks should make it possi-
ble to observe the effect in experiments on oscillators
with a high quality factor, including the currently studied
Josephson junction based oscillators [1].
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