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We have studied frustrated kagome arrays and unfrustrated honeycomb arrays of 

magnetostatically-interacting single-domain ferromagnetic islands with magnetization normal to 

the plane.  The measured pairwise spin correlations of both lattices can be reproduced by models 

based solely on nearest-neighbor correlations. The kagome array has qualitatively different 

magnetostatics but identical lattice topology to previously-studied ‘artificial spin ice’ systems 

composed of in-plane moments.  The two systems show striking similarities in the development 

of moment pair correlations, demonstrating a universality in artificial spin ice behavior 

independent of specific realization in a particular material system. 
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Frustration in magnetic systems has long been known to generate novel phenomena[1, 2], 

ranging from spin liquids in which atomic moments fluctuate as the temperature approaches 

absolute zero[3] to spin ices with monopole-like excitations[4-7]. A new manifestation of 

magnetic frustration has been examined recently in artificial frustrated magnets, systems wherein 

the magnetic moments of lithographically patterned ferromagnetic films are arranged so that 

their magnetostatic interactions are frustrated[8].   These systems have been most closely studied 

in the context of ice-like geometries (i.e., ‘artificial spin ice’) and have opened a new avenue in 

the study of frustration, since the interactions are controllable and the local moment 

arrangements are directly observable[9-19]. We have studied a new form of artificial frustrated 

magnet, consisting of magnetostatically-interacting single-domain ferromagnetic islands with 

moments oriented perpendicular to the plane, rather than in-plane as in all previous studies.  In 

particular, we examine a kagome geometry with qualitatively different magnetostatics but 

identical lattice topology to previously-studied ‘artificial spin ice’ systems with in-plane 

moments, and the two systems show striking similarities in the development of moment pair 

correlations.  Furthermore, we demonstrate that both systems closely follow expectations for a 

nearest-neighbor Ising model, indicating a universality in artificial spin ice behavior independent 

of specific realization in a particular material system. 

Our samples were fabricated from multilayer metallic thin films with structure Ti(20Å) / 

Pt(100Å) / [Co(3Å)/Pt(10Å)]8 deposited by electron-beam evaporation after electron-beam 

patterning of a bi-layer resist; a similar method was used previously to produce small hexagonal 

island clusters[20]. The films were characterized structurally via Grazing Incidence X-ray 

Reflectivity (GIXR) and Wide-Angle X-ray Diffraction (WAXRD). GIXR revealed the expected 

oscillations due to the full stack thickness plus a first-order superlattice peak from the [Co/Pt] 
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superlattice. The structure and in-plane texturing are consistent with previous studies of such 

superlattices; (more details are given in Supplementary information)[21]. These multilayers are 

known to have sufficient interface-induced perpendicular magnetic anisotropy to induce an out-

of-plane easy axis of the magnetization[22, 23], and SQUID magnetometry data confirm that the 

easy axis of magnetic moment for unpatterned films is out of the plane[21].  

As shown in Fig. 1, we patterned our films into honeycomb and kagome lattice arrays of 

circular islands (of radius 200 nm and moment ~5.9×107 μB)[23], with nearest-neighbor 

separations varying from 500 to 1200 nm.  The magnetostatic interactions between all pairs of 

islands are antiferromagnetic and isotropic within the plane, and they depend only on the island 

separation. To generate a low-energy magnetostatic state, the samples were subjected to an ac 

demagnetization protocol similar to that used in previous artificial spin ice studies[8, 9, 14, 15, 

24].  Each sample was rotated at 1000 rpm while a magnetic field of 2000 Oe was applied 

perpendicular to an in-plane rotational axis (aligned with the vertical direction in Fig. 1) and 

stepped down to zero in 1.6 Oe increments, reversing polarity at each step. After 

demagnetization, we used magnetic force microscopy (MFM) to map the resulting moment 

configuration, as shown in Fig. 1. Each island is uniformly black or white, reflecting a single 

domain with moment perpendicular to the plane of the sample. MFM images were taken at five 

different locations within each array. The number of islands imaged at each location varies from 

150 to 1100 depending on the lattice parameter. 

The MFM data reveal interaction-induced correlations among the moments. We define 

the pair correlation as the empirical average spin product (+1 for anti-parallel moments, -1 for 

parallel) over all pairs of each geometrically distinct pair type. Error bars are calculated under an 

assumption of independence, and consequent binomial distribution of the total tabulated sample 
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populations for each lattice/spacing type. In the case of nearest-neighbor pairs in the kagome 

lattice (as well as the in-plane hexagonal lattice mentioned later), geometrical constraints prompt 

us to take the elementary triangles (one or three frustrated bonds) as population constituents.  But 

in all other cases, it is simply pairs (aligned or anti-aligned). For the arrays with largest lattice 

spacing, the correlations nearly vanish, even between nearest neighbors, but they increase 

substantially for the denser lattices. We focus mainly on the smallest lattice spacing, 500 nm, 

since it exhibits the strongest interaction effects. Figs. 2a,b show the correlations between 

different neighbor pairs, arranged in order of the magnetostatic energies (given in Fig. 2d,e) 

calculated through micromagnetic simulations[21, 25]. In each case the nearest neighbor 

correlations are largest, which is unsurprising given that this interaction is much stronger than 

the next-nearest neighbor one.  

To better understand the source of the observed correlations, we must consider that the 

observed moment configurations are outside of thermal equilibrium, and that the 

demagnetization process by which they reach a low energy state is not observed here. Standard 

thermodynamics in a Gibbsian framework produces a maximum entropy state subject to certain 

experimentally observable macroscopic constraints such as volume or pressure. Artificial spin 

systems are unusual in that microstates are directly observable, and hence a broader selection of 

possible constraints, some microscopic, are available[12, 26-29]. We take the experimentally 

observed nearest-neighbor pair correlation as the constraint, and we apply two distinct 

approaches to its imposition: a quasi-equilibrium Gibbsian model (Model G) and a kinetic zero-

temperature quenched model (Model Z), assuming ideal Ising spins in both cases (details in 

Supplementary information[21]).  The Gibbsian model takes the probability of a configuration to 

be exp ( )sΦ , with a nearest-neighbor interaction:  
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NN pairs
( )Φ = ∑ i js K s s  

This state can be calculated by standard Monte Carlo methods, with K adjusted to match the 

experimental nearest-neighbor correlation, in order to produce the maximum entropy state 

consistent with a given nearest-neighbor correlation[26].  The quenched model is purposefully 

constructed with limited kinetics and a nonphysical starting point. It starts with a completely 

random moment configuration and flips randomly selected moments only if doing so lowers the 

nearest-neighbor interaction energy, continuing until the nearest-neighbor correlation matches 

the experimental value.  As seen in Fig. 2, both models reproduce the experimental data well, 

with significant deviations only for the furthest neighbors in the honeycomb lattice. (For these 

further neighbors, Model G overestimates the correlations and hence Model Z performs better. 

Due to the simplicity of both models, one should be cautious in interpreting this difference. 

Nevertheless, a Gibbsian description of Model Z [30] does have an effective four-spin interaction 

which opposes long-range antiferromagnetic ordering. Alternatively, quenched disorder in the 

island switching fields due to small variations in shape may impede long-range antiferromagnetic 

ordering. Both models lack quenched disorder, but the non-dynamical Model G may more 

vulnerable to this deficiency, since Model Z at least begins from a random initial state. One 

should also keep in mind that the real source of the suppression may be long-range dipolar 

interactions which are absent in both models.) The substantial agreement between two such 

disparate models and the experiments suggest that the collective state of the perpendicular 

moment systems is effectively driven only by the nearest neighbor correlations and the lattice 

topology, i.e., the nearest-neighbor correlation constraint is a robust single physical measure that 

characterizes the outcome of the rotational demagnetization. 
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The kagome and honeycomb lattices have similar geometries (kagome is essentially a 

honeycomb lattice with overlapping triplets of islands rather than single islands at each vertex), 

and they do not appear so different from each other on the basis of pairwise correlations plotted 

in Fig. 2a,b. However, the equilateral triads of the kagome lattice generate local frustration, 

whereas the honeycomb lattice, with its two equivalent sublattices, is unfrustrated. If nearest 

neighbor interactions dominate, then the honeycomb lattice has an ordered ground state with 

antiferromagnetically-aligned sublattices and a simple two-fold spin-flip degeneracy. Indeed, we 

see domains of ordered moments (i.e., clusters of islands whose moments are locally ordered in 

the same ground state), as colored in Fig. 3.  The typical domain size increases with decreasing 

lattice spacing, as expected for an interaction effect and can be modeled well by the simulations 

described above[21]. Such ordering has also been achieved in the initial growth of in-plane 

square ice[16] and also in a low-symmetry triangular lattice with more complex interactions[9, 

14].   

In contrast to the honeycomb lattice, our kagome lattice is frustrated and is topologically 

equivalent to an array of in-plane moments along the sides of a hexagonal lattice (compare the 

neighbor pairing “spider” diagrams of Fig. 2e,f), which is perhaps the most extensively studied 

of the artificial spin ice systems[10, 11, 13, 15, 17, 26-29, 31]. The mapping between these 

lattices requires a sign convention for the in-plane moments. The vertices of the hexagonal lattice 

comprise two sub-lattices; we define a moment as positive if it points towards one of them and 

negative if it points toward the other. With this sign convention, both lattices have effectively 

antiferromagnetic nearest-neighbor interactions, and spin correlations for any pair can be 

consistently compared between the two lattices.  Fig. 2c plots these correlations for an in-plane 

hexagonal lattice previously studied (with a lattice constant of 750 nm) and treated by a similar 
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demagnetization protocol[11], to be compared with the panel 2b just above. The similarity is 

striking, considering that the two lattices differ qualitatively in the characteristics of the 

interactions beyond first neighbors: the perpendicular kagome has isotropic, uniformly 

antiferromagnetic interactions between all pairs while the in-plane hexagonal lattice has mixed 

effective ferromagnetic and antiferromagnetic interactions that vary with relative island 

orientation.  In addition, these two lattices interact very differently with the external field applied 

during rotational demagnetization. In the perpendicular lattice every island is aligned identically 

to the instantaneous direction of the applied field, whereas the in-plane lattice contains three sub-

populations of islands with different instantaneous angles to the external field.  The quasi-

equilibrium Gibbsian (G) and kinetic zero-temperature quenched (Z) models are also able to 

reproduce these results. (Note that the limited kinetics of the quenched model cannot generate 

nearest-neighbor correlations approaching 0.33 due to an inability to surmount kinetic barriers 

against removing residual defects, so the quenched model will fail to describe the most strongly 

correlated lattices of reference [11]). This close similarity strongly suggests that the physics of 

the in-plane artificial spin ice system is also dominated by lattice topology and nearest-neighbor 

interactions.  

The striking similarity between the pair correlations of in-plane hexagonal and 

perpendicular kagome lattices apparent in Fig. 2b,c for strongly interacting lattices naturally 

motivates an investigation of how the similarity evolves with the strength of the inter-island 

interactions, which is tunable via the lattice spacing. Fig. 4a plots the nearest neighbor 

correlations for both systems as a function of nearest neighbor interaction energy across a wide 

range of lattice spacings. Again, these two lattices display very similar behavior, with 

correlations abruptly appearing above a threshold interaction strength, increasing at a roughly 
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logarithmic rate,  with similar slopes, then saturating at the geometrical maximum correlation of 

1/3. (Note that the kagome lattice does not quite reach saturation, but presumably would for a 

sufficiently dense lattice).   

The kinetics of our arrays as the observed state is approached are governed not only by 

the nearest-neighbor interaction energy, but also by the field-step Zeeman energy MΔH 

(indicated by marks at the top of Fig. 4a), and a disorder energy scale set by the variations in 

interactions and individual islands’ coercivities due to lithographic and growth inhomogeneities.  

A physical process governed by three energy scales is unlikely to be well-described by a single-

parameter model across its full range of behavior, and therefore one might expect these data to 

be difficult to model without detailed consideration of the dynamics. Nevertheless, following 

previous thermodynamic approaches[16, 28, 29] we performed a Monte Carlo simulation for an 

ideal nearest-neighbor Ising kagome antiferromagnet thermalized at a fixed effective 

temperature, Teff, shown as the solid line in Fig. 4b (details given in Supplementary 

information[21]).  The result successfully reproduces the overall slope of the experimental data 

(scaled by a constant factor of Teff) as the correlation transitions from zero (at high temperatures) 

to one third (at zero temperature).  The parameter Teff is 3.3×105 K and 7.9×104 K for the 

perpendicular and in-plane systems respectively, values of the same order as the interaction 

energies.  The simulation agreement is not perfect in that the simulation result fails to capture the 

abrupt onset of correlation for weak interactions, which appears in experiment to be a threshold 

effect rather than a gentle asymptote to an uncorrelated state.  This threshold presumably arises 

from the demagnetization process. When the field-step Zeeman energy substantially exceeds the 

nearest-neighbor interaction energy, each island freezes into the random orientation preferred by 

its individual coercivity; interactions have no ability to control island orientation. Hence the 
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observed correlation falls rapidly to zero when the interaction energy becomes too small. The 

high-correlation behavior, which also deviates somewhat from the simulation, is likely to be 

governed by the other ratio: interaction strength versus disorder. Interaction effects must 

overpower the intrinsic disorder in island coercivity in order to saturate the correlation at one 

third, and the precise form of that saturation is presumably governed by the distribution of 

coercivities and interaction energies[18, 19, 22, 23, 32].  

The collapse of the experimental data for the two different types of moments, and the 

agreement with simulation, clearly demonstrate that the physics of artificial spin ice transcends 

the particular material realization, and even the geometry of the moments.  Furthermore, the 

demonstration of frustrated lattices with moments perpendicular to the plane opens a number of 

intriguing possibilities for further studies.  Perpendicular moments could imprint a frustrated 

magnetic topology onto the transport properties of thin films underneath the moments, leading to 

potentially exciting results in systems as diverse as superconductors and 2D electron gases.  The 

perpendicular moment systems also open the possibility of connecting the results from artificial 

spin ice systems with recent efforts in patterned recording media, and they offer the possibility of 

applying lessons learned from the physics of frustration to memory or device technologies based 

on interacting nanomagnets[33-35].   
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Figure 1. SEM and MFM images of perpendicular moment nanomagnet arrays in kagome and 

honeycomb geometries with 600 nm lattice spacing. Each island in MFM shows either black or 

white, indicating that it consists of a single magnetic domain with moment pointing either up or 

down. 

 

Figure 2. (a),(b),(c) Correlations as a function of pair order after ac demagnetization for a 

perpendicular honeycomb lattice at 500 nm spacing, a perpendicular kagome lattice at 500 nm 

spacing and an in-plane hexagonal lattice at 750 nm spacing (from [11]). Simulated results that 

constrain the nearest neighbor correlations in a quasi-equilibrium Gibbsian model (Model G: Red 

circles) and a kinetic zero-temperature quenched model (Model Z: Green triangles) agree well 

with the experiment. (d),(e),(f) Corresponding pair energies from micromagnetic simulations [25] 

as a function of pair order, using black points for antiferromagnetic interactions and red points 

for ferromagnetic interactions. Note that AF/FM interactions are indicated only for the in-plane 

lattice because the interactions are purely antiferromagnetic in the perpendicular lattice material. 

The insets label the neighbor pairs for each lattice.  

 

Figure 3. (a,b) Ground state domains in perpendicular honeycomb lattices at 500 nm and 800 nm 

spacing in the same image scale (18 × 18 μm2). Red and blue areas indicate the two-fold ground 

state degeneracy.  

 

Figure 4. (a) Nearest neighbor correlations as a function of nearest neighbor interaction energies 

for all inter-island spacings of the perpendicular kagome lattices and in-plane hexagonal lattices.  

Marks at the top are the field-step Zeeman energy MΔH. (b) Monte Carlo simulation results for 
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the ideal Ising kagome antiferromagnet and data from the main figure scaled to match. E is the 

nearest neighbor interaction energy, and kB is Boltzmann constant. 
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Figure 3 
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Figure 4 
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