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Boolean networks, widely used to model gene regulation, exhibit a phase transition between
regimes in which small perturbations either die out or grow exponentially. We show and numerically
verify that this phase transition in the dynamics can be mapped onto a static percolation problem
which predicts the long-time average Hamming distance between perturbed and unperturbed orbits.

Boolean networks have been a prominent tool for mod-
eling gene regulation since their introduction by Kauff-
man in 1969 [1, 2]. In a Boolean network, each node is
assigned a state, 0 or 1, which is synchronously updated
at discrete time steps according to a pre-assigned update
function which depends on the states of that node’s in-
puts on the previous time step. When used to model
gene regulatory networks, each node represents a gene,
and the state of the node indicates whether or not the
gene is being expressed. Kauffman’s original considered
random networks and update functions in which each of
the N nodes has K input links from randomly chosen
nodes (the N -K model). Kauffman found numerically
that when the in-degree K crosses a critical value, there
is a transition between a stable phase, in which small per-
turbations die out, to an unstable phase, in which small
perturbations grow and become macroscopic.

A derivation of the critical in-degree was given by
Derrida and Pomeau for annealed N -K networks [3].
Here “annealed” means that the network edges and up-
date functions are randomly redrawn between time steps.
They hypothesized that for large networks the stability
properties of the annealed system are similar to those of
the original frozen (non-annealed) system. This hypoth-
esis is well-supported by numerical experiments [3, 4],
and we refer to it as the “annealed approximation.” Re-
cent work [5] has extended this approach by using a par-
tial randomization, in which only the update functions
(but not the network topology) are randomly generated
at each time step. In contrast with the annealed approx-
imation, this “semi-annealed” approximation describes
the dynamics on a fixed network which may have non-
trivial topological features such as edge assortativity [6],
motifs [7], and community structure [8]. The only neces-
sary assumption is that the network is locally treelike (it
cannot have many short loops) [9].

Some recent papers have derived stability properties
of Boolean networks without annealing [10, 11]. These
papers are complementary to ours in the following sense.
Although rigorous, their results only apply to the ensem-
ble average of random networks with restrictions on their
network topology and/or update functions. In contrast,
because our results rely on the semi-annealed approxima-
tion, they can model the dynamics of a specific network.

Here, using our semi-annealed approach, we map the
dynamical problem of stability on a Boolean network onto

the static problem of network percolation in the N → ∞
limit. Previous authors have discussed the percolation
properties of the “frozen component” of N -K networks
[12–14], and others have used percolation to discuss the
stability of N -K lattices [15, 16]. In contrast, we show
that a dynamic quantity, the long-time average Ham-
ming distance between two initially close trajectories on
a Boolean network, can be mapped onto the size of the
giant out-component in a percolation problem. We will
illustrate this map in three different contexts. First,
we consider the well-known annealed approximation and
map it onto percolation in the configuration model [17].
Second, we give a similar map from the semi-annealed
approximation [5] to weighted site percolation [18]. Fi-
nally, we treat a more general class of update functions
by mapping to a correlated bond percolation problem.

Model: A Boolean network is a directed network of N
nodes, in which each node i is assigned a state, xi(t) = 0
or xi(t) = 1, at each discrete time step t. We denote the
in- and out-degrees of node i by dini and douti and the set
of inputs to node i by Ji. A Boolean function or “truth
table” Fi, fixed in time, updates the state of each node i

at each time step t, xi(t) = Fi ({xj(t− 1) : j ∈ Ji}).

In the literature, the truth tables Fi are usually gener-
ated randomly (e.g., [3]). For each combination of input
states to node i, the value of Fi is assigned to be 1 with
probability p or 0 with probability 1 − p, where p is the
“bias probability.” Below, as in [5], we will consider the
more general case where each Fi is generated with a dif-
ferent bias pi assigned to each node i. Later, we will also
consider the case of “canalizing” functions, in which one
input acts as a master switch for the truth table. That
is, input j to node i is canalizing if there is a state of
xj which completely determines the value of Fi indepen-
dent of the other inputs to i. (When xj is not equal to
its canalizing value, Fi depends on the states of its other
inputs.) Canalizing functions are thought to be common
in real gene networks [19, 20].

Consider two trajectories, x(t) and x̃(t), which evolve
on the same Boolean network. The initial conditions x(0)
and x̃(0) differ only on a small randomly chosen fraction
ε of nodes. We say that a node i is “damaged” at time
t if xi(t) 6= x̃i(t), and our goal is to predict the extent
of the damage at long times. Let yi be the fraction of
time that node i is damaged on an orbit of length T as
T → ∞. The normalized long-time average Hamming
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distance Y = 〈yi〉, 0 ≤ Y ≤ 1, is used as the order
parameter for the stability phase transition. The average
〈·〉 is taken over all nodes i, then over all initial conditions
which differ on a fraction ε of the nodes.

Analytic Results: First we treat the annealed approx-
imation for random networks [21]. We assume that the
truth tables are randomly generated with a bias which
depends only on degree. Let Pjk be the probability that
a node has j inputs and k outputs, and let the bias of
such a node be pjk. We define the sensitivity [22] to be
qjk = 2pjk (1− pjk) ∈ [0, 1], which can be interpreted as
the probability that a node with j inputs and k outputs
will become damaged at time t if at least one of its inputs
is damaged at time t− 1.

In the annealed approximation, Y can be predicted an-
alytically using a method derived in [3] and [23], which
can be explained as follows. Let z denote the average
degree of the network, i.e. z =

∑

j,k jPjk =
∑

j,k kPjk,
and let E denote the probability that a randomly se-
lected edge originates from a damaged node. A ran-
domly selected edge originates from a node with j inputs
and k outputs with probability

kPjk

z
, and such a node

will become damaged with probability qjk if it has at
least one damaged input, which occurs with probability
1− (1− E)j . Therefore,

E =
∑

j,k

kPjk

z
qjk

[

1− (1− E)
j
]

,

Y =
∑

j,k

Pjkqjk

[

1− (1− E)
j
]

.

(1)

In the stable regime, these equations only have the trivial
solution E = 0 and Y = 0, but there will be a nonzero
solution in the unstable regime [23].

We now show that Eq. (1) can be mapped onto the
generating function formalism for treating weighted site
percolation in directed configuration-model networks, as
developed in [17] and [24]. In this model, each node is
deleted with some probability which depends only on its
degree. The resulting ensemble of site-deleted networks
exhibits a percolation phase transition, above which there
is a macroscopic connected component or “giant compo-
nent.” This giant component contains a core of mutually
path-connected nodes called the giant strongly connected
component (GSCC); this, along with all the nodes which
can be reached from it, is called the giant out-component
(GOUT). In our map, we will identify the probability
that a node is not deleted with the sensitivity, writing
qjk for the probability that a node with j inputs and k

outputs is undeleted. With this identification, we will
show that Y maps onto the expected fraction of nodes in
GOUT, which we denote S.

It is shown in [17] and [24] that S can be found as
follows. First, define generating functions for the in-
degrees of nodes and edges, F0(w) =

∑

j,k Pjkqjkw
j and

F1(w) =
∑

j,k

kPjk

z
qjkw

j . Next, let u be the probabil-
ity that a randomly selected edge is not in GOUT. The
authors show through diagrammatic expansion that

u = 1− F1(1) + F1(u),

S = F0(1)− F0(u).
(2)

We note that the substitutions E = 1−u and Y = S map
Eq. (1) onto Eq. (2). Therefore, the phase transition be-
tween dynamical stability and instability in this ensemble
of random Boolean networks is equivalent to the static
percolation phase transition on the same ensemble.
Our second result is a more general derivation of the

same correspondence, using the framework of [5]. This
framework applies to a specific locally treelike network in
which each node i can have its own arbitrarily chosen bias
pi, with an associated sensitivity qi = 2pi(1−pi). Again,
we will identify the sensitivity qi with a site nondeletion
probability and map the Hamming distance, Y , onto the
size of GOUT, S. We begin by writing an analogue of Eq.
(1) for a specific node in a semi-annealed, locally treelike
Boolean network,

yi = qi

[

1−
∏

j∈Ji

(1− yj)

]

. (3)

This is the long-time limit of a damage-spreading equa-
tion derived in [5], which noted that i will become dam-
aged with probability qi if at least one of its inputs is
damaged. The assumption that the network is locally
treelike is necessary because all the probabilities in the
product are treated as independent.
Reference [18] derives a similar condition for site per-

colation on locally treelike directed networks in which the
probability that each node is not deleted is qi. It defines
ηi as the fraction of site-deleted networks for which node
i is not in GOUT, and it shows that

ηi = 1− qi + qi
∏

j∈Ji

ηj , (4)

because a node is not in GOUT when it is either deleted
or has no inputs from GOUT. We note that substituting
yi = 1− ηi maps Eq. (3) onto Eq. (4). Because Y = 〈yi〉
and S = 〈1− ηi〉, this map also yields Y = S. For S,
the average 〈·〉 is first taken over all nodes i, then over
all node deletion trials.
We now introduce a third case, in which we consider

Boolean networks with canalizing functions. The method
used for our previous results can be extended to canal-
izing functions, but because the truth table elements in
a canalizing function are not generated independently,
we need to consider a new type of percolation problem
which we call correlated bond percolation. Instead of
typical bond percolation, in which each bond is occupied
or deleted independently, we consider joint probabilities
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FIG. 1 (color online). The ensemble averages of Y , S, and
T (taken over 20 networks) versus the average degree z, for
three families of networks. The three families of networks are
assortative (left), neutral (middle), and disassortative (right).

where the deletion of two bonds may be correlated if they
are inputs to the same node.
Here we describe a correlated bond percolation prob-

lem that corresponds to a Boolean network whose truth
tables each have one canalizing input but are otherwise
generated randomly. That is, for each node i, there is a
canalizing input ci, and all the rows of the truth table
on which xci assumes its canalizing value have the same
constant output; but the outputs of the other rows are
randomly generated with a probability bias pi. To be-
gin, we imagine that the system is equally likely to be
in any of its states. As we will show, it is then formally
possible to obtain equations describing damage spread-
ing in closed form. Based on our numerical results, we
conjecture that these equations can be used to predict
damage spreading in a large class of Boolean networks
with frozen truth tables.
Working under the supposition that all system states

are equally probable, we now derive an expression for yi.
Let ri denote the “activity” of ci on i [22], defined as the
fraction of states in which i will become damaged if ci
becomes damaged. If ci is not damaged, it may be in
either the canalizing or non-canalizing state, each with
probability 1

2
. In the first case it is impossible for i to

become damaged, while the second case is equivalent to
Eq. (3). Therefore,

yi = riyci +
1

2
qi (1− yci)



1−
∏

j∈J ′

i

(1− yj)



 , (5)

where J ′
i = Ji − {ci} and qi is the sensitivity of the half

of the truth table where xci is not in its canalizing state.
It can be shown that this is equivalent to

ηi = 1− ri +

(

ri −
1

2
qi

)

ηci +
1

2
qi

∏

j∈Ji

ηj , (6)
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FIG. 2 (color online). Y versus S for individual neutrally
assortative networks.
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FIG. 3 (color online). (a) Linear and (b) log-log scatterplots
of Y versus S for data generated in the same way as that of
Fig. 2, except that now we average over the quenched disorder
in the truth tables as described in the text. (c) Linear and (d)
log-log scatterplots of Y and S versus T for the same data,
sampling alternate points for visibility.

where ηi = 1− yi. This corresponds to a correlated bond
percolation problem in which one of the following three
things may occur. With probability 1 − ri, all edges to
i are deleted; with probability ri −

1

2
qi, all of i’s edges

are deleted except for the edge from ci; and otherwise no
input edges are deleted. Note that it is straightforward
to describe the case where only some of the nodes have a
canalizing input by using Eqs. (5-6) for those nodes and
Eqs. (3-4) for the others.

Numerical Results: We begin with the map described
by Eqs. (3-4), since it is more general than Eqs. (1-2).
We compare the long-time average Hamming distance Y
to the size of the giant out-component S for particular
networks. We also compare both Y and S to the theo-
retical prediction given by the solution to Eq. (3), which
we denote T .
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Our algorithm is as follows. First we create a
configuration-model network with N = 105 nodes. The
data in the figures were obtained using networks with
Poisson-distributed in-degrees and scale-free out-degrees;
we have also tested other degree distributions and found
similar results. If desired, we then enhance interesting
topological features such as assortativity or feedforward
loops using the same algorithms as in [5]. Next, we assign
each node a bias pi. These may be distributed randomly,
or, if we wish to encourage (impede) instability on the
network, we distribute them so that the nodal average
〈qid

in

i douti 〉 is maximized (minimized) [5]. For the data
in the figures, the biases pi were distributed randomly so
that the sensitivities qi form a uniform distribution on
the interval [.3, .5]. We choose random initial conditions
for x, and a randomly selected fraction ε = .01 of the
nodes are flipped for the initial conditions of x̃.

To find Y , we time-evolve the system and average
|xi(t) − x̃i(t)| between t = 900 and t = 1000, averaging
over 100 initial conditions. The theoretical prediction is
found by iterating Eq. (3) until it converges to a solution
ŷ, then taking T = 〈ŷi〉. Finding S is less straightfor-
ward, because a typical percolation problem is only guar-
anteed to have a single, well-defined giant out-component
in the N → ∞ limit. For reasons discussed in the online
Supplemental Material, we choose the following proce-
dure. We delete each node i with probability 1 − qi and
find any strongly connected components (SCCs) in the
resulting network, where we define an SCC to be a mu-
tually path-connected set of nodes containing at least one
loop. We define S to be the fraction of nodes which can
be reached from at least one SCC, averaged over the en-
semble of deletion trials. We average 103 deletion trials
per network. We find that the numerical uncertainty in
our measured values of T , Y , and S for each point in Figs.
1–4 is smaller than the point size; see the Supplemental
Material for details.

Figure 1 illustrates the relationship between Y , S, and
T for networks generated in this way. We see that Y

and S have the same average values on the ensemble of
random networks with given average degree z. However,
in Fig. 2, we see that the prediction Y = S sometimes
fails for individual networks, especially near the phase
transition. The deviations in Fig. 2 are primarily caused
by the quenched disorder in the truth tables, which may
cause orbits to fall onto attractors which visit only a small
fraction of the state space (and so may deviate from the
semi-annealed approximation).

In Fig. 3, we have averaged over this quenched disor-
der by choosing truth tables from an ensemble of closely
related frozen truth tables (but not networks) as follows.
Before we time-evolve each new pair of initial conditions,
we perform a set of exchanges on the truth tables. For
each edge j → i, with probability 1

2
, we exchange xj = 0

and xj = 1 on the truth table for i. We note that
there are two major differences between this and the
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FIG. 4 (color online). Scatterplots of Y versus S for networks
in which each node has one canalizing input, using Eqs. (5-6).

semi-annealed approximation. In the latter, the truth ta-
bles are changed during the dynamics, whereas here they
are only changed before each new dynamical trial. Sec-
ond, whereas the semi-annealed approximation treats all
inputs interchangeably, this procedure preserves input-
specific information (such as whether an input is canaliz-
ing). In Fig. 3, we see that this procedure yields excellent
agreement between Y , S, and T for individual networks
well above the transition. Near the transition and below
it, finite-size effects still cause S (and, to a lesser extent,
Y ) to deviate slightly from the prediction T . These ef-
fects are discussed in the Supplemental Material.
In Fig. 4, we perform the same numerical experiment

for the case in which each node has one canalizing input.
We find that Y , S, and T agree for individual networks
when we use the map between Eqs. (5) and (6), but the
map between Eqs. (3) and (4) fails for this case, indicat-
ing that we retain significant input-specific information
about the dynamics when we average over the quenched
disorder in the truth tables.
Discussion: We have presented evidence that the sta-

bility of a Boolean network can be understood in terms of
a related percolation problem on that network. This rela-
tionship may be helpful in understanding the stability of
systems modeled by Boolean networks, such as gene reg-
ulatory networks and neural networks. Two previously-
studied cases (the annealed and semi-annealed approxi-
mations) map onto known results for percolation, and a
case of biological interest (canalizing truth tables) maps
onto a novel percolation problem. These maps are valid
for the typical cases in the literature (large, locally tree-
like networks with random or canalizing truth tables),
but have the advantage of applying to specific networks
rather than ensembles of random networks. Numerical
experiments show excellent agreement with our analysis
when averaged over a family of quenched truth tables.
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