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Motivated by the experimental realization of synthetic spin-orbit coupling for ultracold atoms,
we investigate the phase diagram of the Bose Hubbard model in a non-abelian gauge field in two
dimensions. Using a strong coupling expansion in the combined presence of spin-orbit coupling and
tunable interactions, we find a variety of interesting magnetic Hamiltonians in the Mott insulator
(MI), which support magnetic textures such as spin spirals and vortex and Skyrmion crystals. An
inhomogeneous mean field treatment shows that the superfluid (SF) phases inherit these exotic
magnetic orders from the MI and display, in addition, unusual modulated current patterns. We
present a slave boson theory which gives insight into such intertwined spin-charge orders in the SF,
and discuss signatures of these orders in Bragg scattering, in situ microscopy, and dynamic quench
experiments.

Introduction.—Strong spin-orbit (SO) interaction is
key to realizing remarkable states of electronic mat-
ter, such as topological band insulators [1, 2] and Weyl
semimetals [3]. SO coupled Mott insulators can real-
ize the Kitaev model [4] which may enable the study of
Majorana fermions in a condensed matter setting and
provide a platform for topological quantum computa-
tion [5]. This has motivated parallel experimental ad-
vances in ultracold atomic gases, where Raman processes
can be used to create tunable SO coupling, or more gen-
eral nonabelian gauge fields [6–8], paving the way to in-
vestigating SO coupling and its emergent consequences
for atomic gases.

Experiments [6–9] and theory [10–16] on SO coupled
bosons have mainly focused on Bose-Einstein condensa-
tion in weakly interacting gases without a lattice poten-
tial. However, as theory [17–19] and experiments [20]
without SO interaction have shown, tuning the lattice
depth for bosons in an optical lattice can lead to a
strongly interacting regime, accompanied by a suppres-
sion of the condensate density and finally a quantum
phase transition into a featureless Mott insulator [21].
By contrast the physics of SO coupled atoms in an opti-
cal lattice, both of which are expected to lead to unique
phenomena, remains a relatively unexplored frontier [22].

In this Letter we demonstrate that tuning SO cou-
pling and interparticle interactions for ‘spinful’ bosons
at a filling of one boson per site leads to Mott insulating
states with a plethora of magnetic Hamiltonians includ-
ing Dzyaloshinskii-Moriya (DM) interactions [23, 24].
This provides a toolbox to simulate several interesting
quantum magnetic models. These effective Hamiltonians
on a two-dimensional (2D) square lattice are shown to
have a rich classical phase diagram, exhibiting Ising and
XY ferromagnets, an Ising antiferromagnet, two coplaner
spiral phases, and vortex and Skyrmion crystals. In con-
trast to solid state materials, it is easier to tune across

this phase diagram by varying experimental parameters.
Upon increasing the boson tunneling, we find superfluid
phases that inherit magnetic textures from the under-
lying Mott state. We then formulate a slave boson ap-
proach that provides a unified understanding of the spin-
charge orders in the SF phase, as well as the SF-MI tran-
sitions. We conclude by discussing experimental predic-
tions which emerge from our theory.

Model.—We consider bosons with two hyperfine states
(↑ and ↓), described by the following Hamiltonian on a
2D square lattice:

H=−t
∑
〈ij〉

(ψ†iRijψj+h.c.)+
1

2

∑
iσσ′

Uσσ′a
†
iσa
†
iσ′aiσ′aiσ (1)

where ψ†i =(a†i↑, a
†
i↓), and a†iσ creates a spin-σ boson at

site i. The first term describes tunneling of bosons be-
tween neighboring sites, with t the overall hopping am-
plitude. The matrix Rij ≡ exp[i ~A · (~ri − ~rj)], where
~A = (ασy, βσx, 0) is a non-abelian background gauge
field seen by the bosons. Diagonal terms in this matrix
describe spin-conserving hopping of bosons, while off-
diagonal spin-flip terms describe the SO coupling arising
from a two-photon Raman process [25]. We set β=−α,
for which the SO coupling is the lattice analog of the
well-known Rashba term. The second term describes
boson interactions; we choose the intraspecies repulsion
U↑↑ = U↓↓ ≡ U , and set the interspecies interaction
U↑↓ = U↓↑ ≡ λU .

We analyze this model using various methods: (i) a
weak coupling (U, λU�t) Gross-Pitaevskii approach to
study the condensate structure; (ii) a strong coupling
(U, λU�t) approach to understand the Mott state and
associated spin textures; (iii) an inhomogeneous mean
field theory to describe the emergent strongly correlated
superfluids; (iv) a “slave-boson” theory to understand
the coupled magnetic and charge orders.
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FIG. 1. (Color online) (a) Band structure of Eq. (1) for
U = 0, with α = −β = π/4. There are four degenerate

minima at ~Q1, · · · ~Q4 in the lower band due to rotational sym-
metry breaking by the square lattice and a Dirac cone at the
Γ point. (b) The spin eigenstates in the lower band. The
spin is locked to the momentum through the SO coupling.
(c) Real-space density distribution of spin-up particles in the
condensate with λ = 1.3 from the GP calculation. There is a
similar distribution for the spin-down particles. On the other
hand, for λ < 1, the spin density is uniform. The total density
is uniform for all λ.

Weak coupling superfluid.—The non-interacting band
structure for Eq. (1), shown in Fig. 1(a), has four de-

generate minima in the lower band at ~Q1 = (k0, k0),
~Q2 = (−k0, k0), ~Q3 = (−k0,−k0) and ~Q4 = (k0,−k0),
where tan k0 = (tanα)/

√
2. This contrasts sharply

with the continuum case where the minima form a de-
generate circle, and suggests that Rashba coupled con-
densates confined to an optical lattice are more sta-
ble against fluctuations. We label the eigenstates at
these points as ϕm = exp(i ~Qm · ~r)χm, m = 1, . . . , 4.
The spin wavefunction χm associated with ϕm has the
form χ†m ≡ (1/

√
2)(1, exp(−imπ/4)), and more generally

winds around the Γ point in the first Brillouin zone with
a winding number 1, as shown in Fig. 1(b).

Within the Gross-Pitaevskii (GP) approximation, all
N bosons condense into a common single particle state
Φ =

∑
m cmϕm where cm are complex variational pa-

rameters, satisfying
∑
m |cm|2 = 1,m = 1, · · · 4. Set-

ting Φ† ≡ (Φ∗↑,Φ
∗
↓), we determine cm by minimizing the

interaction energy Uint({cm}) ≡ NU/2(|Φ↑|4 + |Φ↓|4 +
2λ|Φ↑|2|Φ↓|2) [26]. As an illustration, for α = π/4 we
find the following behavior: For λ < 1, only one of the
four states is occupied. In this case, both the spin and
number density of the superfluid are uniform, and the
ground state is four-fold degenerate. For λ > 1, two
states with opposite wave vectors are occupied, leading
to stripe order in the spin density (see Fig. 1(c)) while

TABLE I. Exchange couplings in the effective hamiltonian.
Taking α and λ as tunable parameters, several quantum mag-
netic Hamiltonians can be realized.

Jxx̂ = − 4t2

λU
cos(2α) Jxŷ = − 4t2

λU

Jyx̂ = − 4t2

λU
Jyŷ = − 4t2

λU
cos(2α)

Jzx̂ = − 4t2

λU
(2λ− 1) cos(2α) Jzŷ = − 4t2

λU
(2λ− 1) cos(2α)

~Dx̂ = − 4t2

U
sin(2α)ŷ ~Dŷ = 4t2

U
sin(2α)x̂

the total density remains uniform. The wave vector for
the spin-stripe density is 2

√
2k0 and the ground state is

two-fold degenerate. Similar magnetic states are found
below at strong coupling, but this GP approach focus-
ing on the minima at ~Qm misses the additional magnetic
textures.

Strong coupling Mott phases.—At unit filling and for
U/t = ∞, repulsive interactions favor exactly one boson
at each site. The ground states at t = 0 are highly de-
generate, with an arbitrary spin state at each site. Away
from this limit, to O(t2/U), we obtain the effective low-
energy spin Hamiltonian

Hspin =
∑

i,δ=x̂,ŷ

{ ∑
a=x,y,z

Jaδ S
a
i S

a
i+δ+ ~Dδ ·(~Si× ~Si+δ)

}
(2)

where the exchange coupling constants Jaδ and DM vec-

tors ~Dδ are given in Table I. Thus, by tuning α and λ
in a single system, one can emulate several Hamiltoni-
ans of interest in quantum magnetism. For example, for
α=0, Hspin reduces to an XXZ magnet [27] with negative
(ferromagnetic) xy-coupling and a z-coupling determined
by (1− 2λ). For α 6= 0, one obtains both anisotropic ex-
change couplings as well as a DM interaction which tends
to induce spin spirals as in chiral magnets like MnSi. For
α = π/4 we find a “compass”-type model with a DM
perturbation. The Hamiltonian in Eq. (1) thus consti-
tutes perhaps the simplest itinerant model with chiral
magnetic ground states.

We obtain the classical ground-state phase diagram
of Hspin in Eq.(2) via Monte Carlo annealing [28] (see
Fig. 2). We find the following phases characterized by a

magnetic structure factor S~q = |
∑
i
~Sie

i~q·~ri |.
xyFM/zFM: Ferromagnetic phases where the spin struc-
ture factor exhibits a peak at ~q = (0, 0). In the zFM,
spins orient along the ±z-axis. In the xyFM, the SO
interaction pins the spins to lie in the xy-plane making
angles (2n+ 1)π/4 (with n = 0 . . . 3) with the x-axis.
zAFM: Antiferromagnetic phase where S~q exhibits a peak
at (π, π), with spins pointing along the ±z-axis.
Spiral-1: A coplanar state; spins spiral in the plane de-
fined by the vectors ẑ-~q, where ~q ≡ (q,±q) is an incom-
mensurate wavevector.
Spiral-2: A coplanar state, with spins spiralling in the
ẑ-~q plane, where ~q ≡ (q, 0) (or (0, q)) is incommensurate
for small α, but there is a parameter region (light green
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FIG. 2. (Color online) (a) Phase diagram in the Mott insulat-
ing regime from Monte Carlo annealing of the spin hamilto-
nian Eq. (2). Spin configurations are abbreviated as described
in the text. The darker area of the Spiral-2 region represents
a commensurate 4-site spiral. (b) shows the xy-plane projec-
tion of the real space spin configurations in the Spiral-1, 2,
SkX, and VX phases. The magnetic structure factor peaks
are shown in the insets.

region of “Spiral-2” in Fig. 2) that supports a commen-
surate (4× 1)-site unit cell.
2× 2 Vortex Crystal (VX): A coplanar ground state,
with spins in the xy-plane having components Sx =
(−1)x/

√
2 and Sy = (−1)y/

√
2. The spins wind clock-

wise or counterclockwise around each plaquette. The VX
has S~q peaks at (π, 0) and (0, π).
3× 3 Skyrmion Crystal (SkX): A non-coplanar state,
where the spins form a 3 × 3 unit cell with nonzero
Skyrmion density, given by

∑
i
~Si · (~Si+x̂ × ~Si+ŷ) . The

structure factor has peaks at (2π/3, 0) and (0, 2π/3).
The Spiral-1, Spiral-2, VX, and SkX phases break

the C4v symmetry of the square lattice; they are thus
expected to undergo multiple thermal transitions, as-
sociated with restoring spin rotational and lattice ro-
tational symmetries, enroute to the high temperature
paramagnetic state. In the Spiral-1 phase, for example,
these transitions are manifested through two specific heat
peaks in our classical Monte Carlo simulations [29].

Mott lobes and magnetically textured SFs.—To ad-
dress the strongly correlated superfluid phases beyond
the GP approach, and to connect with the magnetic tex-
tures in the Mott insulator, we extend the numerical
mean field theory introduced in [30] to spinful bosons.

We introduce the order parameter φiσ = 〈aiσ〉 and de-
compose the kinetic term of the Hamiltonian in Eq.(1)

as a†iσajσ′ ≈ a†iσφjσ′ + φ∗iσajσ′ − φ∗iσφjσ′ , where terms
quadratic in the fluctuations have been discarded. In or-
der to capture non-uniform magnetic ordering, and pos-
sible inhomogeneous superfluidity, we must allow for a
spatially varying condensate order parameter. The self-
consistent solution of this mean field theory requires an
iterative minimization over a finite cluster (more details
are given in [28]).

For t = 0, the single site Hamiltonian is HU =
(U/2)(n2↑ + n2↓ + 2λn↑n↓) − (µ + U/2)(n↑ + n↓). Thus,
the maximum size of the Mott lobe is min(U, λU) along
the µ-axis. As we increase t/U , there is a quantum phase
transition from the magnetic insulating states to the su-
perfluid states at a critical value (t/U)c, which increases
with α for fixed λ. This is consistent with previous results
obtained using a hopping expansion [22] which, however,
only addressed the homogeneous Mott phase with xyFM
magnetic order.

To characterize the magnetic structures in the su-
perfluid phase, we calculate (i) the local magnetic mo-

ment ~mi ≡ 〈a†iµ~σµνaiν〉 and (ii) the bond current κµνij =

−it(Rµνij 〈a
†
iµajν〉 − c.c.), where ij are nearest neighbors.

For the phases we now describe, the diagonal term µ = ν
of κµνij is zero and the nonzero off-diagonal term repre-
sents the total current arising from spin flip processes.

In Fig.3 (A) and (B), we plot the Mott lobes for fill-
ing n = 1 and α = π/2, together with the z-component
of the onsite spin density and bond currents in the SF
phase. We find that for λ = 1.5 and λ = 0.5 the magnetic
order in the SF reflects the magnetic order in the under-
lying Mott state. In addition the SFs support a checker-
board pattern of plaquette currents. We find for λ = 1.5,
where the Mott phase is zAFM, this current order spon-
taneously breaks the time reversal symmetry (in picking
one of the two allowed checkerboard patterns), while for
λ = 0.5, the underlying magnetic phase picks a unique
loop current order. To understand this interplay between
magnetic order and bond current patterns found in our
inhomogeneous mean-field theory, we next formulate a
slave boson theory of this problem which also provides a
unified framework to understand the SF-MI transitions.

Slave boson theory.—Inspired by theories of strongly
correlated electronic materials [31, 32], we decompose the
physical boson a into separate bosonic spin and charge
degrees of freedom: a†i,σ = 1√

n̂b,i

b†if
†
i,σ, where the b-

bosons (chargons) carry charge but no spin, while the f -
bosons (spinons) carry spin but no charge. The physical
Hilbert space of the a-bosons is given by specifying the
number of up- and down-spin a-bosons on each lattice
site |m ↑, ` ↓〉. On the other hand, in the slave-particle
representation, we write these states as

|m ↑, ` ↓〉a = |(m+ `)〉b ⊗ |m ↑, ` ↓〉f (3)
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FIG. 3. (Color online) Phase diagrams of the spin-orbit cou-
pled Bose-Hubbard model in µ/U vs. t/U plane, showing
Mott lobes and superfluid states. (A) phase diagram with
λ = 1.5 and α = π/2 and (B) λ = 0.5 and α = π/2. The
width of the n = 1 lobe is given by λU and the critical value
(t/U)c increases with λ. The two insets show the local spin
density distribution (red=↑, blue=↓, purple in between) and
bond currents for t/U = 0.08 in the superfluid phase close to
the Mott states. µ/U is tuned such that the average number
of particles per site is unity. For λ = 1.5, the spin density
assumes z-antiferromagnetic order whereas for λ = 0.5, the
magnetic moments are in the 2×2 VX phase, and restricted to
the xy-plane. The bond currents for both λ = 1.5 and λ = 0.5
share the same pattern, with clockwise and anti-clockwise pla-
quette loop currents forming Ising anti-ferromagnetic order.

In this approach, the b and f operators can act on the
right hand side independently. To remain in the phys-
ical Hilbert space of the problem, we must impose the
local constraint b†i bi =

∑
σ f
†
iσfiσ. At mean-field level,

this constraint is treated on average and we are led to
two separate, coupled Hamiltonians for the spinons and
chargons which need to be solved self-consistently [28].

We want to understand the superfluid phases with
magnetic textures as indicated by the inhomogeneous
mean-field results. The magnetic textures can be ob-
tained by condensing the spinons into an appropriate
condensate wavefunction Φiσ. This leads to an effective
chargon Hamiltonian

Hb=−t
∑
〈ij〉µν

(Rµνij Φ∗iµΦjνb
†
i bj+h.c.)+

U

2

∑
i

b†i b
†
i bi bi . (4)

Different magnetic textures thus ‘act’ on the chargons as

distinct effective abelian gauge field configurations.
As a simple example, consider the magnetic order in

the zFM which is captured by setting Φi↑=1 and Φi↓=0.
This leads to a conventional Bose Hubbard model for the
chargons, but with a renormalized chargon hopping am-
plitude t cosα. This renormalizes the critical interaction
needed to drive the Mott transition at unit filling from
U0
c for spinless bosons to UzFMc (α) = U0

c cosα. Going
beyond mean field theory, we conclude that this Mott
transition remains in the 3D-XY universality class [29].

To understand the bond current ordered SF emerging
from the insulator with zAFM order, we set Φr↑ = 1 and
Φr↓ = 0 on the A sublattice, and Φr↓ = 1 and Φr↑ = 0
on the B sublattice. Compared to the previous case, the
chargon Hamiltonian is now seen to enclose π-flux per
plaquette for the chargons. This flux results in the spon-
taneous checkerboard pattern [33, 34] of mass currents
seen in Fig.3 (A). The SF phases emerging from the SkX,
VX, Spiral-1 and Spiral-2 phases, as well as a complete
SB mean field theory, treating magnetic and charge or-
ders self-consistently, will be discussed elsewhere [29].

Experimental implications.—One interesting aspect of
our work is the realization that one can tune across a
wide variety of magnetic Hamiltonians, which support
magnetically textured Mott insulators and superfluids,
starting from the simple Bose Hubbard model in Eq. (1).
The magnetic structure factor in the different phases,
shown in Fig.2, can be directly measured with optical
Bragg scattering experiments [35].

Another route to exploring these ordered phases is via
in situ microscopy which can detect lattice-resolved hy-
perfine states and number fluctuations of atoms [36]. Fi-
nally, the unusual bond currents in the SF phases, such
as the checkerboard current pattern in the SF phase de-
scending from the zAFM, could be detected using a re-
cent proposal to quench the lattice potential along one
direction which dynamically converts these current pat-
terns into measurable atomic density patterns [37]. Such
experiments would provide a deeper understanding of the
emergent consequences of the interplay of spin-orbit cou-
pling and strong interactions for bosons.

We thank J. Radić, A. Di Ciolo, K. Sun, and V. Gal-
itski for discussions and comparing data on the classical
magnetic phases. We acknowledge funding from ARO
Grant W911NF-08-1-0338 (W.S.C), DARPA under the
Optical Lattice Emulator program R15835 (S.Z.) and
NSF DMR-0907275 (N.T.). A.P. acknowledges support
from NSERC (Canada).

Note added. During the completion of this work, we
become aware of the complementary work by Radić et
al. [38]. Where our results overlap, they are in agreement.
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