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We describe a new possible route to the metal-insulator transition in doped semiconductors such
as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott
localization of electrons into a quantum spin liquid state with diffusive charge neutral “spinon”
excitations. Such a quantum spin liquid state can appear as an intermediate phase between the
metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of
metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator
transition. Further we show that though the transition is second order the zero temperature residual
electrical conductivity will jump as the transition is approached from the metallic side. However
the electrical conductivity will have a non-monotonic temperature dependence that may complicate
the extrapolation to zero temperature. Signatures in other experiments and some comparisons with
existing data are made.

Phenomena near the metal-insulator transition (MIT)
in doped semiconductors such as Si:P or Si:B have been
studied extensively for more than three decades[1, 3–5].
Nevertheless, several aspects of the physics, for instance
the detailed critical behavior[5–7], remain mysterious. In
this paper we explore and develop the consequences of a
new possible route to the MIT where a quantum spin
liquid insulator appears as an intermediate phase be-
tween the metal and the Anderson-Mott insulator. In
recent years such a quantum spin liquid Mott insulator
has been observed to intervene between the Fermi liq-
uid metal and conventional magnetically ordered Mott
insulators in a few different clean materials[8–10]. Here
we study the strongly disordered situation appropriate to
doped semiconductors and describe a variety of experi-
mental consequences.

When P is doped into Si, the extra electron of P forms
a Hydrogen-like state with an effective Bohr radius of
about a ≈ 20 Å[1, 2]. A simple picture of the doped
semiconductor is as a collection of randomly placed “Hy-
drogen” atoms. The system may then be described as
a half-filled Hubbard model on a random lattice sup-
plemented by the inclusion of the long range Coulomb
interaction Vij between the electrons:

H = −
∑
ij;α

tij

(
c†iαcjα + h.c

)
+U

∑
i

ni↑ni↓+
∑
i6=j

Vijninj

(1)
At low concentrations, the tij ≈ t0e

−rij/a are small,
the on-site U dominates and a Mott insulator of local
moments results. The local-moments are coupled anti-
ferromagnetically, and due to their random placement,
preferentially form singlets with their closest available
neighbor. The resulting random-singlet phase has an
extremely broad distribution of singlet binding energies,
giving rise to a diverging density of states for low-energy
spin-excitations, contributing a divergent coefficient of
heat capacity, γ = C/T and spin-susceptibility χ[13].

As the concentration of dopants, n, is increased, even-

tually the typical tij dominates over the U and a dif-
fusive metal is obtained. A continuous phase transition
between metal and insulator occurs at some critical in-
termediate concentration, nc, where tij ≈ U [2]. Because
of the random placement of dopants, a fraction of the
local moments are very weakly coupled to the conduct-
ing electrons and survive unscreened into the metallic
phase. The diffusive metal appears to be well described
by a “two-fluid” model where the conducting electrons
exist essentially decoupled from a random fraction of
weakly-coupled local-moments[1, 14]. As in the insulat-
ing phase, these local moments continue to dominate the
low-temperature thermodynamic and magnetic proper-
ties of the metallic phase, but do not appear to strongly
modify its transport properties.

It is natural to ask: What is the fate of the con-
ducting fluid across the metal–insulator transition? The
conventional answer, implicitly adopted by most existing
work[3, 4], is that all electron degrees of freedom are lo-
calized by disorder[15], which is perturbatively enhanced
by interactions. In this scenario, shown in Fig. 1a, de-
creasing n < nc gives a localized Anderson-Mott insu-
lator with non-zero average density of states. As n is
further decreased, the system crosses over continuously
towards a correlation driven Mott-insulator of local mo-
ments.

In this paper, we point out a new and conceptually
distinct scenario for the metal–insulator transition in
doped semiconductors. In this scenario, the charged–
conducting fluid is localized into a gapless quantum spin-
liquid, but the electron thermal transport remains diffu-
sive into the weakly insulating regime. There is grow-
ing theoretical and experimental evidence that such gap-
less spin-liquids occur in clean Mott insulators, where
strong charge fluctuations and frustration prevent mag-
netic ordering[8–10]. This experience makes it natural to
ask whether or not one should expect a spin-liquid phase
to form in (uncompensated) doped semiconductors near
the MIT where charge fluctuations are strong, the system
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FIG. 1. Two scenarios for the MIT in doped semiconduc-
tors. (a) Conventional picture electron localization transition
to Anderson-Mott insulator, which crosses over continuously
to a pure Mott insulator (indicated by wiggly lines). (b) In
the newly proposed scenario, the transition is to a spin-liquid
with gapless fermionic spinon excitations, here the electri-
cal MIT and spin/thermal MIT occur separately at nc1 and
nc2 respectively. “+LM” indicates the fraction of randomly
decoupled local spin-moments that inevitably accompany all
phases.

is at half-filling, and magnetic order is prevented by the
random lattice structure, the competition between anti-
ferromagnetic direct-exchange and random-sign RKKY
exchange, and by quantum fluctuations.

The possibility of a spin-liquid phase in doped semicon-
ductors due to multi-particle ring-exchange effects was
previously suggested but not explored in [11]. Also, frac-
tionalization of the random singlet phase of local mo-
ments was suggested[12] as a possible mechanism for un-
conventional superconductivity in B doped diamond.

Nature of the Possible Spin–Liquid Phase(s) – The
proposed spin-liquid phase is most conveniently de-
scribed by formally dividing the electron into a bosonic
U(1) rotor eiθ that carries the electron–charge, and a
fermionic spinon fα that carries the electron–spin: ci =
eiθifiα[16, 17]. This description allows extraneous un-
physical states that must be removed by constraining
nb,i −

∑
α f
†
iαfiα = 1 on each site, i. Here nbi is the

number operator conjugate to θi. The above decom-
position has a U(1) gauge redundancy associated with
θi → θi + Λi and fi → e−iΛifi, which manifests itself
in the low-energy effective theory as an emergent U(1)
gauge field, a(r, t) [18]. A similar slave-particle descrip-
tion was previously developed for the weakly disordered
2D case for the triangular lattice organics[29].

Decoupling the hopping term −tijc†i,scj,s =

−tijei(θi−θj)f†i,sfj,s in a mean field approximation
and including gauge fluctuations gives the following
effective action: Seff =

∫
dτ (Lb + Lf )

Lb =
∑
i

1
2

(
∂τθi + a0

i

)
(Uδij + Vij)

−1 (
∂τθj + a0

j

)
− tij

∑
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f
ije
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Lf =
∑
ij f
†
i

[(
∂τ − a0

i − µ
)
δij − tijχbije−iaij

]
fj,s (2)

where χfij = 〈f†i,sfj,s〉 and χbij = 〈ei(θi−θj)〉 are deter-
mined self-consistently. Note that, due to the random
placement of sites, in general

∑
s〈f
†
i,sfi,s〉 will be spatially

varying. Consequently, even at the mean-field level, the
bosons will experience a random chemical potential; this

changes the universality class of the Bose-Mott transition
compared to the clean case (where 〈nb〉 = 1 for every site
on both sides of the Mott transition).

The metallic Fermi-liquid state corresponds to a
superfluid–ordered phase of the bosonic rotors with
〈ei(θ(x)+

∫ x a(y)·dy)〉 6= 0, coexisting with a diffusive
Fermi-liquid of spinons. In this phase, the emergent
gauge field is gapped by the condensate of charged rotors
through the Anderson–Higgs mechanism, and the rotors
and spinons are “glued” together into ordinary electrons.

Eq. 2 also naturally describes a deconfined state in
which the rotors form a Bose-glass/Mott-Insulator, while
the spinons remain diffusive. This results in an exotic
charge–insulator with finite-density of states for gapless
spin-1/2 excitations. We suggest that this spin-liquid
phase may occur near the MIT for doped semiconduc-
tors. In this scenario, shown in Fig. 1b, the magnetic
properties of the system change only gradually across the
MIT at nc1, and are qualitatively identical in both the
metal and insulator. In particular, we expect that one
would still find a decoupled fraction of local-moments.
As these local moments dominate the low-temperature
thermodynamics and magnetic properties, the clearest
signature of the spin-liquid is metallic thermal conduc-
tivity, κ ∼ T at low T [9]. While there has been exten-
sive experimental analysis of the conductivity of doped
semiconductors near the MIT, very little is known about
thermal–transport.

In the slave-rotor language, the formation of local
moments comes from rare strong fluctuations in disor-
der that locally bind the rotor and fermion back into
a correlation–localized electron. We assume that the
principal effect of correlated disorder among the rotor,
spinon, and gauge-field sectors is to produce such local
moments, and that the physics of the remaining non-local
moment bulk can be well described by treating disorder
separately in each sector.

In the spin-liquid phase, the emergent gauge field is de-
confined, and in clean systems its fluctuations lead to sin-
gular self-energies for the spinons resulting in non-Fermi-
liquid behavior (2D)[19–26] or marginal Fermi-liquid be-
havior (3D)[27, 28, 30]. For the strongly disordered
doped semiconductors, the inelastic scattering rate for
the spinons from gauge fluctuations scales as τ−1

g ∼ T
and is dominated by the elastic impurity scattering for
low T [31]. Consequently, the low-energy properties of the
disordered spinon Fermi-liquid will be largely unaltered
by the emergent gauge field. Furthermore, the gauge field
propagation is strongly damped by the diffusive spinons,
leading to an ω ∼ q2 scaling of gauge-excitations. This
scaling implies that the gauge-field contribution to ther-
modynamic quantities is sub-dominant compared to the
spinon contribution. For example the gauge-field specific
heat scales as Ca ∼ T 3/2 � Cspinon ∼ T .

In 2D, a deconfined phase for the gauge-field requires
the presence of extended, gapless fermionic excitations to
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suppress instanton configurations [32, 33]. In 3D, how-
ever, a compact U(1) gauge–field may remain deconfined
even without extended, gapless matter [32]. Therefore,
in addition to the gapless, thermally–conducting spinon
Fermi-surface state described above, it is also possible to
form an insulating state where the charge degrees of free-
dom are Mott localized and the spinons are Anderson-
localized by disorder. Such a spinon Anderson insula-
tor is distinguished (in principle) from the conventional
Anderson-Mott insulator by the presence of a gapless
emergent U(1) gauge-field (though experimentally de-
tecting the emergent gauge-field would be challenging).

Generalized Phase Diagram – The MIT achieved by
changing n, though experimentally relevant, is concep-
tually complicated since disorder and interactions are
simultaneously affected. It is conceptually simpler to
consider a generalized phase-diagram where disorder
strength W and interaction strength U can be separately
adjusted, as in Fig. 2. Here we restrict our attention
to 3D, half-filling, and non-nested Fermi-surfaces (which
are not inherently unstable to magnetic ordering). Fur-
thermore, we remain agnostic about the particular real-
ization of disorder, with the expectation that such details
will not alter the qualitative discussion that follows.

We begin by considering various limiting cases. The
(U = 0,W 6= 0) limit is completely understood[15]: here
a diffusive Fermi-liquid occurs up until a critical disorder
strength beyond which all states near the Fermi-energy
become localized leading to an Anderson insulator (AI).
Each of these phases is known to be stable to infinitesi-
mal interactions, and therefore extends at least to small
U . The limit of (U 6= 0,W → ∞) is also straightfor-
ward. Here the Anderson localized insulator at weak
interactions crosses over continously to the Mott insu-
lator of local-moments at strong-interactions. At T = 0,
the local moments are magnetically ordered in either a
random–singlet or spin-glass phase.

Finally, the line (U 6= 0,W = 0) is also reasonably well
understood[17], albeit with slightly less confidence. The
clean Fermi-liquid survives up until some critical inter-
action strength, beyond which it becomes a weak Mott-
insulator with a spinon Fermi surface (SFS). For large U ,
the emergent gauge field undergoes a confinement transi-
tion and anti-ferromagnetic order develops. Here again,
each of the clean interacting phases is stable to infinitesi-
mally small amounts of disorder and extends to finite W .
The only distinction being that, for any (U 6= 0,W 6= 0),
disorder creates a non-zero density of decoupled local mo-
ments (indicated in Fig. 2 by “+LM”).

These considerations greatly constrain the structure of
the generalized phase–diagram. Each of the phases at
the boundary are known to extend to finite values of W
and U . Given the understanding of the boundaries of
the phase diagram, the main issue here is not whether a
strongly disordered fermionic spin-liquid could exist, but
rather which particular path through the generic W and
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FIG. 2. Schematic generalized phase–diagram as a function
of disorder strength W and interaction strengths U measured
with respect to the typical hopping t.

U phase–diagram is appropriate to tuning n in doped
semiconductors. Fig. 2 depicts an extension of the well-
understood outer boundary of the phase diagram to the
interior. While one can conceive of many intermediate
insulating phases at intermediate U and W , in the slave-
rotor language, the only other natural candidate is the
deconfined spinon Anderson insulator described above.

Thermal Conductivity – In the spin-liquid scenario,
the electrical MIT and thermal MIT occur separately:
whereas electrical conductivity vanishes in the insulat-
ing phase, thermal conductivity remains metallic, scal-
ing as κsp ∼ T at low temperatures. Since the ever-
present concentration of local-moments dominates the
low-temperature thermodynamical properties of the sys-
tem (but contributes only weakly to transport), linear-T
metallic conductivity is the clearest experimental signa-
ture of the spin-liquid.

While κsp ∼ T at the lowest temperatures there will be
Altshuler-Aronov–type corrections to κ from interactions
and disorder: κAA ∼ T 3/2 [34–36]. Also, one expects a
large contribution, κph from phonons: κph ∼ T 3 [43].
Therefore, to observe the metallic spinon-contribution, it
may be necessary to work at very low temperature, and
carefully subtract sub-dominant contributions.

Quantum Critical (QC) Scaling – Despite extensive ex-
perimental and theoretical effort, the quantum-critical
(QC) behavior of electrical conductivity remains con-
tentious and poorly understood. The existence of a spin-
liquid phase would have important implications for how
QC scaling should be extracted and interpreted. For
T = 0 and n > nc, the system is a Fermi-liquid obey-
ing the Wiedemann-Franz law: κ/LT = σ (where the
Lorenz number L is a constant). Since σ vanishes at the
transition while κ/LT remains non-zero there must be
a discontinuous jump in the T = 0 electrical conductiv-
ity at the MIT. In the slave-rotor description, this jump
arises from the Ioffe and Larkin rule[37] that the electrical
resistivity ρ equals the sum ρ = ρb + ρf of the resistivi-
ties of the bosonic rotors ρb and spinons ρf respectively.
Crossing the MIT at T = 0, the bosons transition from
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FIG. 3. Quantum critical scaling (with z = 1)[44] of electrical
conductivity σ and linear–T coefficient of thermal conductiv-
ity κ/TL (L is the Lorenz number) near the MIT as a function
of concentration and temperature.

a superfluid with ρb = 0 to an insulator with ρb =∞. In
contrast, the fermionic contribution, ρf evolves smoothly
through the transition, implying a non-universal jump in
the zero-temperature conductivity. Though superficially
similar to Mott’s early proposal[38], this jump in conduc-
tivity is unrelated to the idea of a “minimum metallic
conductivity”.

Evidence against a discontinuous jump in conductiv-
ity in Si:P comes mainly from pressure tuning studies[6]
that show conductivity droping sharply but apparently
continously to zero at the MIT. However, determining
whether one is truly accessing the asymptotic behavior
near the QC point is very challenging, and the proper
interpretation of the conductivity scaling remains con-
troversial and poorly understood [7]. For example, the
pressure tuned experiments extract a conductivity scal-
ing exponent ν = 1/2 that is incompatible with general
exponent inequalities for a metal-insulator transition[39],
but could be explained as a thermally rounded version of
the true T = 0 conductivity jump. In the spin-liquid sce-
nario, as we will argue below, issues with extrapolating
to T → 0 and n→ nc are further exacerbated.

Near the quantum critical point (QCP) (i.e. T ≈ 0,
and δn = n − nc � nc), ρb(T, δ) obeys the quantum
critical (QC) scaling for the disordered Bose-Hubbard
model Mott transition as shown in Fig. 3a. In the high-
temperature critical regime where T is the dominant per-
turbation away from criticality, ρb(T ) ∼ T−1/z. At lower
temperatures T < T ∗ ∼ (δn)z/ν , where δn is the domi-
nant perturbation from criticality ρb(T ) crosses over from
the T−1/z to 0 as superfluidity develops. Here z is the
dynamical exponent for the disordered Bose-Mott tran-
sition with Coulomb interactions[44].

The spinon contribution to the resistance tends to a
constant at zero temperature, due to the elastic scat-
tering from disorder. At finite temperature, there will

also be non-constant contributions to ρf : ρAA ∼
√
T ,[40]

and ρph ∼ T∼3−5, from interactions and phonons respec-
tively. The resulting electrical resistance, ρ = ρb + ρf ,
is depicted in Fig. 3b. for various δn near the MIT.
The main feature here, is the resistance upturn due to
the nearly–critical fluctuating bosons, which quickly dis-
appears below T < T ∗ as ρ saturates to a non-universal
constant set by ρf . The corresponding T dependence of
σ = 1/ρ is shown in Fig. 3c. Notice the discontinous
jump in the very-low temperature conductivity between
δn → 0+ and δn = 0. As shown in Fig. 3d, this jump
will be rounded at non-zero temperature, and could es-
cape notice (consider, for example, if the lowest achiev-
able temperature were indicated by the vertical dotted
line in Fig. 3c).

The spin-liquid scenario outlined here suggests a very
different scheme for extracting the QC behavior of con-
ductivity, than that for a conventional localization tran-
sition. Here, one should include only data for which the
resistance saturates to a nearly constant value set by the
spinon contribution. In practice there is a minimum
achievable value of temperature, Tmin. Consequently,
this saturation region will disappear as the MIT is ap-

proached when δn <∼ T
ν/z
min . Beyond this point, extrapo-

lations based on the curvature of σ would fail to capture
the true T → 0 behavior.

The spin-liquid scenario will also complicate efforts to
extract the critical scaling of σ(n) near the MIT. This dif-
ficulty is illustrated in Fig. 3d, which shows σ(T = 0, n).
As the concentration is decreased in the metal, the con-
ductivity curves slowly towards an eventual localization
transition at nc2 (which may or may not occur). How-
ever, in the present scenario, the Mott transition of the
rotors intervenes at nc1 > nc2 before the spinons local-
ize. In this case, extrapolations of QC scaling based on a
conventional Anderson transition from the metallic side
would be misleading.
Discussion – In summary, we propose an alternative

scenario to the Mott transition in doped semiconductors
where the weakly insulating state is a spin-liquid with
fermionic excitations. While such a transition has defi-
nite consequences for the quantum critical scaling of con-
ductivity near the MIT, such quantum critical behavior
is notoriously difficult to determine.

Other possible signatures of spin-liquid behavior in-
clude sub-gap optical conductivity[41] in the insula-
tor from gauge fluctuations and vanishing quasi-particle
residue approaching the MIT (measurable by tunnel-
ing on the metallic side). However, the former coexists
with sub-gap conductivity from exciting weakly bound
local moments, and the latter behavior will also be pro-
duced by a soft Coulomb gap (which will develop at the
MIT)[42]. Consequently, such probes are indirect, and
would require a detailed quantitative comparison.

Therefore, we suggest that the clearest test for spin-
liquid behavior in doped semiconductors would come
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from a careful study of thermal transport near the MIT.
A spinon Fermi-liquid would lead to κ ∼ T for low T ,
which, if observed, would strongly indicate the presence
of gapless fermionic excitations.
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