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Predictions of the anisotropic magnetic susceptibility χ below the antiferromagnetic (AFM) order-
ing temperatures TN of local moment Heisenberg AFMs have been made previously using molecular
field theory (MFT) but are very limited in their applicability. Here a MFT calculation of χ(T ≤ TN)
is presented for a wide variety of collinear and noncollinear Heisenberg AFMs containing identical
crystallographically equivalent spins without recourse to magnetic sublattices. The results are ex-
pressed in terms of directly measurable experimental parameters and are fitted with no adjustable
parameters to experimental χ(T ≤ TN) data from the literature for several collinear and noncollinear
AFMs. The influence of spin correlations and fluctuations beyond MFT is quantified by the devi-
ation of the theory from the data. The origin of the universal χ(T ≤ TN) observed for triangular
lattice AFMs exhibiting coplanar noncollinear 120◦ AFM ordering is clarified.

Introduction. Magnetic susceptibility χ measure-
ments versus temperature T have been used for a cen-
tury to obtain important information about the magnetic
properties of materials. The Weiss molecular field theory
(MFT) has been instrumental in interpreting the χ(T )
data in the paramagnetic state above the long-rangemag-
netic ordering temperature TN of local magnetic moment
antiferromagnets1,2 (AFMs) via the Curie-Weiss (CW)
law χ = C

T−θp
, in which the magnitude of the local mo-

ments is contained in the Curie constant C and the na-
ture and strengths of their interactions in the Weiss tem-
perature θp. MFT has also been used extensively for
comparisons with experimental data of its predictions for
the ordered magnetic moment and magnetic heat capac-
ity versus T in the ordered state of AFMs at T < TN.
Thus MFT is a primary tool to identify important char-
acteristics of local moment AFMs.

In contrast, very few comparisons have been made of
experimental anisotropic χ(T < TN) data for AFMs with
the predictions of MFT even for collinear AFMs where
the ordered moments ~µi are aligned along the same easy
axis.1–3 Here we provide simple MFT expressions to fit
experimental χ(T < TN) data for ordered AFMs con-
taining identical crystallographically equivalent spins in-
teracting by Heisenberg exchange for arbitrary sets of
exchange constants. The theory treats collinear and pla-
nar noncollinear AFM structures on the same footing
without the use of magnetic sublattices. The results are
expressed in terms of independent experimentally mea-
surable quantities and are used to fit with no adjustable
parameters representative experimental χ(T < TN) data
from the literature for several collinear and noncollinear
AFMs. The fits can quantify the influence of spin cor-
relations and fluctuations beyond MFT on χ(T < TN),
and can also help to elucidate the AFM structures and
exchange interactions if these are uncertain or unknown.

Using MFT, Van Vleck calculated in 1941 the
anisotropic χ(T ≤ TN) for magnetic fields H applied
parallel (χ‖) and perpendicular (χ⊥) to the easy axis of
collinear AFMs with only nearest-neighbor Heisenberg
interactions between spins on two distinct interpenetrat-
ing “bipartite” sublattices.4 Yoshimori carried out MFT
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FIG. 1: (Color online) A “proper screw helix” noncollinear
AFM structure proposed for MnO2.

5 The net interplanar
exchange interactions Jz1 and Jz2 in the generic J0-Jz1-Jz2

model are indicated. A “cycloidal helix” AFM structure5 oc-
curs when the wave vector k of the helix is in the xy-plane of
the magnetic moments.

calculations of χ(T ≤ TN) in 1959 for the special case
of a planar noncollinear AFM “proper screw helix” mag-
netic structure that he proposed for MnO2,

5,6 as shown
schematically in Fig. 1. These MFTs are very restricted
in their applicability and have been rarely used to fit ex-
perimental χ(T ≤ TN) data over the past five decades.

Theory. Here we consider identical crystallograph-
ically equivalent spins interacting by Heisenberg ex-
change, with no anisotropy present except that due
to an infinitesimal H. The part Ei of the aver-
age energy of the system that is associated with in-
teractions of ~µi with H and with its neighbors ~µj

is Ei =
1

2g2µ2
B

~µi ·
∑

j Jij~µj − ~µi ·H, where Jij is the

Heisenberg exchange coupling between ordered magnetic
moments ~µi and ~µj . Using MFT,1 one obtains the
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CW law for T ≥ TN, where C =
Ng2µ2

BS(S+1)
3kB

, θp =

−S(S+1)
3kB

∑

j Jij and TN = −S(S+1)
3kB

∑

j Jij cosφji, N is
the number of spins, g is the g-factor, µB is the Bohr
magneton, S is the spin, kB is Boltzmann’s constant and
φji are the angles between ~µi and its neighbors ~µj in the
AFM-ordered state. We rewrite the CW law for T ≥ TN

in dimensionless form as

χ(t)TN

C
=

1

t− f
, t ≡

T

TN
, f ≡

θp
TN

=

∑

j Jij
∑

j Jij cosφji

.

(1)
Below TN, the χ with H perpendicular to the ordered
moment axis or plane for collinear or planar noncollinear
AFMs, respectively, is given in general by MFT as1

χ⊥(T ≤ TN)TN

C
=

χ(TN)TN

C
=

1

1− f
. (t ≤ 1) (2)

For collinear AFMs, a field applied below TN along
the easy axis just changes the magnitude of an ordered
moment without rotating it and in MFT we obtain

χ‖(t)TN

C
=

1

τ∗ − f
, τ∗(t) =

(S + 1)t

3B′
S(y0)

, (3)

where B′
S(y0) ≡ dBS(y)/dy|y=y0

, BS(y) is the Brillouin

function,1 y0 = 3µ̄0

(S+1)t , µ̄0 = µ0

µsat
, µsat = gSµB, and the

magnitude of the ordered moment in zero field µ̄0(t) is
calculated numerically from µ̄0 = BS(y0).

1 From Eqs. (2)
and (3) one obtains

χ‖(T )

χ(TN)
=

1− f

τ∗ − f
. (4)

By Taylor expanding B′
S(y0) = (S + 1)/3 for y0 → 0,

one obtains τ∗(t → 1) = 1 and
χ‖(T→TN)

χ(TN) = 1, as re-

quired. For T → 0, B′
S(y0) → 0, τ∗ → ∞ and χ‖ → 0.

The parameters in Eq. (4) required to fit experimental
χ‖(T ≤ TN) data are just f, S and χ(TN), which can
usually be easily independently determined from exper-
iment or estimated. Setting f = −1 in Eq. (3) repro-
duces Van Vleck’s 1941 prediction for the special case
of bipartite collinear AFMs with only nearest-neighbor
interactions.4

For planar noncollinear AFMs, one must take into ac-
count via MFT the field-induced changes in both the
magnitudes and directions of the ordered moments to
first order in H , and we then obtain the in-plane (xy)
susceptibility

χxy(T ≤ TN)

χ(TN)
=

(1 + τ∗ + 2f + 4B∗)(1 − f)

2 [(τ∗ +B∗)(1 +B∗)− (f +B∗)2]
,

(5)
where

B∗ = −

∑

j Jij cos
2 φji

∑

j Jij cosφji

. (6)

Using τ∗(t → 1) = 1, Eq. (5) gives
χxy(T→TN)

χ(TN) = 1,

irrespective of the value of B∗, as required, whereas
limt→0 B

′
S(y0) → 0 and τ∗ → ∞ yield from Eq. (5)

χxy(T = 0)

χ(TN)
=

1− f

2(1 +B∗)
. (7)

The parameter B∗ is the only new parameter specifi-
cally associated with noncollinear AFMs, is not generally
directly measurable, but can be evaluated if the AFM
structure and an exchange interaction model are avail-
able. Alternatively, it can be used as a fitting parameter
to provide such information.
On the other hand, the value of B∗ can be experi-

mentally determined within a minimal generic J0-Jz1-Jz2
model6 for helical/cycloidal AFM structures as in Fig. 1
on any Bravais spin lattice. In this model, one sums the
exchange interactions of a given magnetic moment with
all other moments in the same ferromagnetically-aligned
layer perpendicular to the helical/cycloidal wave vector
k and calls that sum J0, and similarly for nearest- and
next-nearest-layer interactions Jz1 and Jz2, respectively,
as indicated in Fig. 1. The same theory is applicable to
isolated spin chains where J0 = 0. Then the k of the he-
lix/cycloid is obtained in terms of the exchange constants
by minimizing the exchange energy to be5,6

cos(kd) = −
Jz1
4Jz2

, (8)

where k = |k| and d is the distance between layers. kd
is the turn angle between adjacent moments along the
helix/cycloid axis (Fig. 1) and is experimentally measur-
able by magnetic x-ray or neutron diffraction techniques.
Using Eq. (8) one can express B∗ in Eq. (6) as

B∗ = 2(1− f) cos(kd)[1 + cos(kd)]− f. (9)

Using Eq. (9), one can now write χxy(T ≤ TN)/χ(TN)
in Eq. (5) completely in terms of independently measur-
able quantities. Furthermore, using Eqs. (7) and (9) one
obtains

χxy(T = 0)

χ(TN)
=

1

2
[

1 + 2 cos(kd) + 2 cos2(kd)
] . (10)

The expression for χxy(T = 0)/χ(TN) obtained in 1959
by Yoshimori5 for the special case of the helix in MnO2

is consistent with the general result (10).
Using Eq. (10), the χxy(T = 0)/χ(TN) is plotted ver-

sus kd in Fig. 2(a). The predicted behavior has a surpris-
ing nonmonotonic dependence on kd with a maximum at
kd = 2π/3 with a value of unity. Using Eqs. (5) and (9),
χxy(T ≤ TN) and its dependences on kd and f are shown
in Fig. 2(b), where χxy is seen to be strongly dependent
on T and f except for kd = 2π/3 = 120◦ for which it is
independent of T and f . One can prove that this result
for kd = 2π/3 is obtained within the J0-Jz1-Jz2 model
for any value of S. Then using Eq. (2), our MFT makes
the remarkable universal prediction for helical/cycloidal
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FIG. 2: (Color online) (a) χxy(T = 0) versus kd [Eq. (10)]
and (b) χxy versus T and f [Eqs. (5), (9)] for helical/cycloidal
AFMs with S = 7/2 within the generic J0-Jz1-Jz2 MFT
model.

120◦ AFM ordering that χ(T ≤ TN)/χ(TN) is isotropic
and independent of S, f and T for T ≤ TN. The same
result is obtained for other AFMs with 120◦ ordering
and therefore a helical/cycloidal AFM structure is not
required [see also Fig. 5(a) below].
If only the six nearest-neighbor interactions J occur

in a single triangular lattice layer exhibiting 120◦ or-
dering in MFT, one obtains from Eqs. (1) and (2) that
χ(T = 0)/(Ng2µ2

B) = 1/(9J), independent of S. For the
classical (S → ∞) isolated triangular layer Heisenberg
AFM, one obtains the same isotropic value.7,8 Classical
Monte Carlo simulations for a triangular spin lattice layer
indicate that χ is isotropic and also nearly independent
of T at low T .9 Our MFT result for kd = 2π/3 thus
significantly extends the previous calculations for single
classical triangular lattice layers to finite quantum spins
S and long-range AFM ordering of coupled layers.
Fits of Experimental Data. As shown in Eq. (2), χ⊥

is independent of T below TN with the value χ(TN), so
no explicit fitting of experimental data is required.
We first present fits by Eq. (4) of χ‖(T ) data for

the collinear AFMs GdNiGe3, an orthorhombic com-
pound containing nonmagnetic Ni atoms and Gd+3 spins
S = 7/2,10 and MnF2 with the primitive tetragonal ru-
tile structure containing Mn+2 spins S = 5/2.11 The
anisotropic χ(T ) data at low T for single crystals of
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FIG. 3: (Color online) Anisotropic χ(T ) of single crystals of
(a) GdNiGe3 (Ref. 10) and (b) MnF2.

12,13 In (b), the θp value
was taken from Ref. 14. The corresponding χ‖(T ) data are
fitted by the MFT prediction in Eq. (4) (solid red curves).

GdNiGe3 (Ref. 10) and MnF2 (Refs. 12,13) and the cor-
responding fits of the χ‖(T ≤ TN) data by Eq. (4) with
no adjustable parameters are shown in Fig. 3. The fit to
the χ‖(T ≤ TN) a-axis data of GdNiGe3 with S = 7/2
is better than the fit to the corresponding c-axis data of
MnF2 with S = 5/2. This comparison agrees with ex-
pectation, because MFT does not include the influence of
quantum spin fluctuations which increase as S decreases.
This suggests that a comparison of such MFT fits with
experimental data is a quantitative diagnostic for the oc-
currence at T ≤ TN of spin fluctuations and correlations
beyond MFT.

As an example of a noncollinear planar AFM, primitive
tetragonal GdB4 consists of crystallographically equiv-
alent Gd spins 7/2 with the AFM structure shown in
Fig. 4(a) and with the ordered moments oriented in
the [110] and equivalent directions.15 The magnetic and
chemical unit cells are the same. Anisotropic χ(T )
data at low T are shown in Fig. 4(b).16 The fit of the
χab(T ≤ TN) data by Eq. (5) with no adjustable pa-
rameters is shown by the solid blue curve using pa-
rameters in the figure. The value of B∗ was estimated
from Eq. (7) using the experimental values16 of f and
χab(T → 0)/χ(TN). The deviation of the fit from the
data is similar to that for GdNiGe3 in Fig. 3(a), suggest-
ing a common mechanism for it.
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FIG. 4: (Color online) (a) AFM structure of GdB4.
17 (b)

Magnetic susceptibility χ versus temperature T for a single
crystal of GdB4,

16 together with the fit of the χab(T ≤ TN)
data by Eq. (5) using S = 7/2 and the experimentally deter-
mined parameters f and B∗ in the figure.

We now test our universal prediction for noncollinear
120◦ AFM structures that χ(T ≤ TN)/χ(TN) is isotropic
and independent of f, S and T for 0 ≤ T ≤ TN with
the value of unity, which does not require explicit fits.
The hexagonal compound α-YMnO3 contains a triangu-
lar lattice of crystallographically equivalent Mn+3 spins
S = 2 and exhibits 120◦ coplanar ordering in the ab-
plane.17 As in GdB4, the magnetic and chemical unit
cells are the same. Anisotropic χ(T ) data for this com-
pound are shown in Fig. 5(a).18 The χ(T ≤ TN) data
parallel and perpendicular to the ab-plane are nearly
isotropic and independent of T . Similar χ(T ≤ TN)
results have been obtained for many triangular lattice
AFMs with 120◦ helical or cycloidal ordering, such as
the S = 3/2 compounds LiCrO2,

19 VF2 and VBr2.
20–22

Our MFT prediction is even strongly confirmed by the
χ(T ≤ TN) data

23 in Fig. 5(b) for the slightly monoclin-
ically distorted triangular spin lattice in RbCuCl3 con-
taining highly quantum Cu+2 spins-1/2 exhibiting cy-
cloidal AFM ordering within the hexagonal ab-plane.24

The cycloid axis is in the hexagonal [110] direction with
a turn angle kd = 108◦,24 close to the undistorted tri-
angular lattice value of 120◦. The reason that the MFT
prediction is accurate even for S = 1/2 deserves further
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FIG. 5: (Color online) χab(T ) for the triangular lattice AFMs
(a) hexagonal YMnO3 (Ref. 18) with Mn+3 spins S = 2 and
kd = 120◦ ordering in the ab-plane17 and (b) RbCuCl3 with
Cu+2 spins S = 1/2.(23)

investigation.
In summary, a generic molecular field theory of the

anisotropic χ(T ≤ TN) was formulated for local moment
Heisenberg AFMs that is widely applicable to collinear
and planar noncollinear AFM structures. The com-
parisons of our results with experimental anisotropic
χ(T ≤ TN) data for single crystals in Figs. 3–5 with
no adjustable parameters demonstrate that such anal-
yses constitute a powerful probe of the AFM structure
and spin interactions. Our results will also be useful for
analyzing χ(T ≤ TN) data for polycrystalline samples.
An important avenue for future research is to further
study the applicability, accuracy and limitations of our
MFT predictions. The present work is a stepping stone
for additional MFT calculations of χ(T ≤ TN) that could
include various types of anisotropies.
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