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We observe an apparent singularity in the electronic properties of the Anderson Model of Local-
ization with bounded diagonal disorder, which is clearly distinct from the well-established mobility
edge (localization-delocalization transition) that occurs in dimensions d > 2. We present results
of numerical calculations for Anderson’s original uniform (box) distribution of onsite disorder in
dimensions d = 1, 2 and 3. To establish this hitherto unreported behavior, and to understand its
evolution with disorder, we contrast the behavior of two different measures of the localization length
of the electronic wavefunctions - the averaged inverse participation ratio and the Lyapunov expo-
nent. Our data suggest that Anderson’s model exhibits richer behavior than has been established
so far.
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The Anderson model of localization, formulated over
fifty years ago, has been the foundation on which our
understanding of the effects of disorder on electronic sys-
tems has been built. In his original paper[1], Ander-
son demonstrated the existence of localized states in lat-
tice systems in three dimensions with sufficient disorder.
Subsequently, it was shown that both in one[2] and two
dimensions [3], electron states become localized for ar-
bitrary small potential disorder. Wegner[4] mapped the
localization problem on the sigma model, opening the
doors for a systematic study of the localization transition
in 2 + ǫ dimensions for models with disorder belonging
to different symmetry classes[5]. Sophisticated numer-
ical techniques were developed to address the problem
of localization[5],[6],[7], and study not only critical expo-
nents, but also multifractality of the wavefunctions, as
well as eigenvalue statistics at the critical point. A 50-
year commemorative volume has recently appeared[8].

Following Anderson’s paper, there was concern that
the mobility edge, signaling the transition from localized
to extended states may be accompanied by a singular-
ity of the density of states (DOS). However, a pioneer-
ing work by Edwards and Thouless[9] proved that the
DOS in the original Anderson model (with a uniform but
bounded distribution of disorder) was analytic in a large
region near the band center for any value of the disorder,
and thus, by implication, there was no singularity at the
Anderson transition at these energies. Wegner[4] showed
that for Gaussian disorder, there was no singularity in
the DOS at any energy for any nonzero disorder. Since
the localization transition was present with Gaussian dis-
order as well, this laid to rest any speculation about the
occurrence of any singular behavior of the DOS at the
localization transition.

The lack of singularities other than the divergence
of the localization length has given rise to the popular
belief that properties are quite smooth elsewhere. How-
ever, for the 1D Anderson model, it was shown[10] that
the weak disorder expansion of the Lyapunov exponent is

non-analytic at band center and other commensurate fill-
ings; a comprehensive study has recently been done[11].
Here we provide evidence of a rather prominent singular-
ity of a different kind. In particular, we find that in An-
derson’s original model, outside the bounds of Edwards
and Thouless[9] an apparent singular behavior of elec-
tronic eigenstates, as measured by the ensemble averaged
inverse participation ratio, and possibly of the DOS it-
self which arises from an abrupt transition into a regime
of resonant states. We find this behavior in the local-
ized region of the phase diagram, in one, two and three
dimensions, and expect it to be present in higher dimen-
sions as well. Furthermore, we find this behavior for all
bounded distributions of on-site disorder (only) that we
have considered, but not for unbounded distributions like
Gaussian disorder, the latter being consistent with the
result of an analytic DOS for Gaussian disorder[4].
Several recent studies have focussed on the role played

by resonant states in transport. Pulsed microwave exper-
iments by [12] in quasi-1D localized samples have ques-
tioned the validity of self-consistent localization theory
in the presence of resonant transmissions. This is fur-
ther supported by numerical and analytical results in
[13]. Also, the distribution functions of conductivity in
one dimension in the regime of resonant states are shown
to be governed by two length scales by Deych et al [14].
Thus, the regime of resonant states differs in several ways
from that of regular Anderson localized states.
We recall the single-band tight-binding Hamiltonian

studied by Anderson[1] -
H =

∑

i

ǫi|i >< i|+ V
∑

i,j

|i >< j| (1)

where |i > denotes a state localized at the site i, the sum
i is over sites of a d-dimensional hypercubic lattice, and
i, j are nearest neighbors. Further, ǫi are independent
random variables distributed uniformly in the (bounded)
interval (−W/2,W/2), i.e. P (ǫi) = 1/W in the aforesaid
interval, and P (ǫi) = 0 outside. For such a distribu-
tion, the DOS is nonzero only in the bounded interval
(−EB, EB), where EB = W/2+ZV is the true band edge



2

and Z = 2d is the coordination number for hypercubic
lattices. [Quite generally, for P (ǫi) symmetric around a
mean (which can be taken to be zero without loss of gen-
erality), the DOS is also symmetric for bipartite lattices
like the hypercubic lattice]. For this model, the DOS
was shown to be analytic for |E| < W/2 − ZV [9]. In
what follows, we use V = 1, as our unit of energy.
Two canonical quantities used to study localization nu-

merically are (i) the inverse participation ratio, and (ii)
the Lyapunov exponent. The inverse participation ratio
of any wavefunction Ψ =

∑

i ai|i >is defined as:

IPRΨ =

∑

i |ai|
4

(
∑

i |ai|
2)2

(2)

To determine the IPRΨ, we diagonalize the Hamilto-
nian (1) for lattices of size Ld (in d-dimensions), for a
specified value of W/V , and compute the inverse partici-
pation ratio for each eigenstate Ψ. We then compute the
ensemble averaged IPR for eigenstates with energies in
a small interval around any given energy E, by collect-
ing data for as many samples as are needed for IPR(E)
to converge, and plot IPR(E) versus E. For energies E
within the localized regime, it is easy to see that IPR
is inversely proportional to the number of sites the typ-
ical wavefunction resides on and therefore IPR reaches
a constant value as the size of the system L → ∞. For
E within extended states, IPR is expected to decay as
L−d, in d dimensions, while at the mobility edge, IPR
decays as a non-trivial power law, related to the multi-
fractal nature of the eigenstates at the critical energy[5].
The Lyapunov exponent characterizing eigenstates at

a give energy E, Ly(E), is determined using a quasi-
one-dimensional structure, with a fixed width M in the
transverse dimensions (i.e. a cross section of Md−1) and
a (much longer) length L in one dimension, which is
allowed to become as large as necessary to obtain the
L → ∞ limit. Ly(E) gives the exponential decay of
the wavefunctions at energy E (quasi-one-dimensional),
and is thus inversely related to the localization length
ξM (E) at E. (To obtain the true behavior of the local-
ization length in the thermodynamic limit for a d > 1
dimensional system, the limit M → ∞ has to be dealt
with; in this paper, we restrict ourselves to Ly(E) for
d = 1, where no such extrapolation is required). In d = 1,
Ly(E) is obtained[6] from the eigenvalues of the transfer
matrix (which come in inverse pairs), for each value of
the disorder parameter W/V , by increasing the size of
the system L till convergence is reached.
In d = 1, where all states are known to be localized

for all nonzero disorder (W ), both IPR(E) and Ly(E)
are expected to be inversely proportional to the local-
ization length ξ(E). In Figure 1, we plot both IPR(E)
and Ly(E) as a function of E for a typical value W = 4.
(For both plots, the size of the system has been taken
to be large enough for the quantities to converge within
our statistical errors). As can be seen, the two quan-
tities track each other reasonably well in the middle of
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FIG. 1: IPR(E) and Ly(E) for W = 4 for the 1D Anderson
model with uniform (“box”) distribution

the band, both increasing as one moves away from the
band center (implying a decreasing localization length,
as would be expected). However, as one approaches the
band edges, Ly(E) continues to rise, whereas IPR(E)
changes course, and appears to go to zero at the band
edge. Furthermore, upon close examination, the down-
turn appears to be accompanied by a non-analyticity at
the maximum value of the IPR.

The non-monotonic behavior of IPR(E) is easily un-
derstood in terms of Lifshitz states [6], [15]. The states
at the very edge of the band are due to rare configura-
tions of a cluster of contiguous sites which all have an
on-site energy close to W/2 (or −W/2); the larger the
cluster, the closer the cluster eigenstate energy (ECL) to
the band edge, EB ((EB −ECL) ∝ 1/L2, where L is the
linear dimension of the cluster; such a result follows from
a particle-in-a-box like considerations[6]). In the case
of Lifshitz states, the eigenstates actually spread over a
larger number of sites as the band edge is approached;
nevertheless, their exponential decay at long distances
keeps getting faster. Consequently, Ly(E) grows mono-
tonically, while IPR(E) decreases as the band edge is
approached, going to zero like |EB − E|d/2.

Since rare clusters giving rise to the tail of the Lif-
shitz states occur with probability exp[−cLd] for clus-
ters of linear dimension L, one can show [15] that
near the band-edge, the electronic density of states,
N(E) ∝ exp[−C/|EB −E|−d/2], where c and C are con-
stants. Thus, while much is known[15] about the behav-
ior asymptotically near the band edge, it is also tem-
pered by the fact that the DOS goes exponentially fast
to zero at the band-edge with an essential singularity;
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FIG. 2: Ly(E) vs IPR(E) for different values of disorder W

for the 1D Anderson model.

further, this exponential drop becomes more pronounced
in higher dimensions, so as to be of less practical signifi-
cance.

However, the phenomenon of resonant tunneling which
gives rise to the Lifshitz tail, is not limited to large clus-
ters. In fact, in the large disorder limit (W >> V ), res-
onance between a single pair of sites gives rise to states
that are outside the disorder bandwidth W , by O(V ),
which is parametrically larger than the perturbation se-
ries for typical “Anderson-localized” states, for which the
energy shift in a locator expansion[16] is V 2/W . States
residing on two (or a small number of) resonant states
are not exponentially rare, but only down by a power-
law factor in the expansion parameter (V/W ) at large
disorder. Such local resonance can give rise to special
effects, such as extended states in dimer models[17], and
on tree structures[18] and, as we show below, also for the
Anderson model of Eq. (1) on hypercubic lattices.

Figure (2) plots Ly(E) versus IPR(E) for different
values of W/V for the 1D Anderson model. As can
be seen, the implicit plots show two clear branches for
W/V = 4 and greater, confirming the non-analytic be-
havior of IPR(E) at its maximum. For smaller W/V ,
the two-branched curves lose the sharp bend and ap-
pear to become analytic, but remain re-entrant (bending
backwards); as W → 0, the re-entrant behavior disap-
pears as well. For each value of W/V , we divide the
states into the two branches, separated by the maximum
value of IPR(E). For the positively/negatively corre-
lated branches, we call the states “typical” - Anderson
localized, and “resonant” - Lifshitz like, states respec-
tively. By determining the total number of states in each
branch we plot the fraction of “resonant” states (as de-
fined above) of the total number of states in Figure 3 as a
function of the disorder parameterW/V . As can be seen,
this kind of division suggests that there is an abrupt in-
crease in the effective number of resonant states around
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FIG. 3: Abrupt rise in fraction of “resonant” states near W =
3.8 for the 1D Anderson model.

W/V = 3.8, to a value of ≈ 17%, a fraction large enough
that they cannot reasonably be called “rare-fluctuation”
effects, as Lifshitz tail states typically are. The fraction
of resonant states is inversely related to the length ls (the
average distance between the resonant states) defined in
[14].

The above singular behavior is seen in one dimension
for which all states are localized for nonzero W. Clearly,
therefore, the existence of this phenomenon should not
depend on dimensionality; in fact, we see the same behav-
ior for IPR(E) for the Anderson model with the uniform
(box) distribution of disorder in two and three dimensions
(in the localized phase) also (Fig 4).
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FIG. 4: IPR of the 2D Anderson model at W = 20 (left) and
the 3D Anderson model at W = 32 (right) for the uniform
distribution (circles, blue) as well as Gaussian distribution
with the same variance (triangles, red), deep in the localized
phase.

It is instructive to look at the whole distribution of the
IPR at different energies in the band instead of just its
average value IPR(E) at each energy. In Fig. 5, we plot
this distribution (in d = 1) for large disorder (W = 10),
when most eigenstates are very strongly localized, and
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FIG. 5: Distribution of IPR at different energies in the band
for W = 10 for the 1D Anderson model.

the distribution can be easily interpreted. The IPR has
a bimodal distribution with two peaks around 0.5 and
0.9, indicating that most of the states have large ampli-
tudes on either 2 or 1 sites respectively. The distribution
does not change much as we move from the center of the
band towards the edges, till at a certain value of energy,
we suddenly lose all the 1-site i.e. Anderson-type wave-
functions. This is exactly the energy at which the sharp
downturn of the IPR is observed.

We have also explored other bounded distributions
P (ǫi), and find a similar sharp transition as a function
of energy E between typical Anderson-localized states,
and resonant states. A detailed analysis of these results
will be presented elsewhere[21]. However, no such be-
havior is observed numerically when the onsite energies
are Gaussian distributed, even when we reach very low
values of DOS (down to .01% of the peak). We believe
the lack of singular behavior is due to the fact that the
Gaussian distribution is unbounded; and our finding is
consistent with Wegner’s result (no singularity in DOS
for Gaussian disorder[4]).

As the apparent singularity is seen only for bounded
disorder, it is appropriate to ask whether such models
are realistic for actual experimental systems. While the
naive guess would favor unbounded distributions, for real
disordered systems, chemical considerations (e.g. elec-
tron affinities or ionization potentials of locally stable
random clusters) would in fact suggest that models with
bounded disorder are closer to reality. Sharp thresholds
have been seen in optical absorption[19] and DOS[20] of

dopant clusters in the positionally disordered system of
doped semiconductors. For the traditional alloy model
with a bimodal distribution of onsite energies, the situ-
ation is even more severe, with several critical energies
separating eigenstates of different types[21], especially in
the large disorder limit.

Since the behavior we find persists (and is most evi-
dent) for large disorder (i.e., large W ), and a majority of
eigenstates are localized mainly on one or two sites in that
limit (see Fig. 5), we have solved a simple two-site Ander-
son model with a uniform (box) distribution for the onsite
energies, for which we have been able to derive analyti-
cal expressions for both the DOS and IPR(E). We find
that for such a toy model[22], there is singular behavior of
both quantities at a critical energy |E| =

√

(W/2)2 + V 2,
which is in good agreement with the critical energy deter-
mined numerically for the thermodynamic limit for large
W . We have also numerically computed both quantities
for finite one-dimensional rings of lattice sites, and find
that while the singularity in the DOS gets weaker with
size, that for IPR(E) actually gets stronger with increas-
ing size, consistent with there being a genuine singularity
in the thermodynamic limit. The behavior of the DOS in
the thermodynamic limit will be reported elsewhere[21].

In conclusion, we have numerically analyzed the be-
havior of the eigenstates of Anderson’s original model
for single-particle localization on hypercubic lattices in
dimensions d = 1, 2 and 3 with on-site disorder. By fo-
cusing on two measures of the localization length - the
inverse participation ratio (IPR) and the Lyapunov ex-
ponent in the localized phase, we find that the two mea-
sures show distinct behavior as one moves from the band
center towards the band edge. This divergence of be-
havior is accompanied by an apparent singularity of the
IPR at a critical energy that separates typical Anderson-
localized states from resonant states. Higher moments of
the electronic wavefunctions also display singular behav-
ior at the same energy. This critical energy is found for
bounded disorder distributions (but not for unbounded
distributions), and is distinct both from the mobility edge
and the band edge. Possible experimental consequences
of such an abrupt change in behavior are being investi-
gated, e.g. in disordered photonic lattices[23].
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