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We investigate the effect of weak rotation on the large-scale circulation (LSC) of turbulent
Rayleigh-Bénard convection, using the theory for cessations in a low-dimensional stochastic model
of the flow previously studied. We determine the cessation frequency of the LSC as a function of
rotation, and calculate the statistics of the amplitude and azimuthal velocity fluctuations of the
LSC as a function of the rotation rate for different Rayleigh numbers. Furthermore, we show that
the tails of the reorientation probability distribution function remain unchanged for rotating sys-
tems, while the distribution of the LSC amplitude and correspondingly the cessation frequency are
strongly affected by rotation. Our results are in close agreement with experimental observations.
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The complex phenomenon of thermal turbulence, also
known as turbulent Rayleigh-Bénard convection (RBC),
develops in a heated fluid layer under gravity by a succes-
sion of instabilities in the thermal transport due to an in-
terplay between different driving forces such as buoyancy,
viscous drag, and diffusion. This balance between differ-
ent transport mechanisms is quantified by the Rayleigh
number Ra = α

0
g∆TL3/νκ determining the flow state.

Here, α
0

is the isobaric thermal expansion coefficient, g is
the gravity field, ∆T is the temperature gap between bot-
tom and top plates, L is the height of the fluid container,
κ is the thermal diffusivity and ν is the kinematic viscos-
ity. When Ra is sufficiently large, the flow becomes tur-
bulent and a large-scale circulation (LSC) is formed. The
latter is maintained by the emission of plumes from the
top and bottom surfaces which, due to buoyancy, move
upwards (hot plumes) or downwards (cold plumes) [1–3].
This LSC is known to appear in various rotating natural
systems, such as atmospheric [4] and oceanic flows [5],
and the dynamo driving planetary magnetic fields [6].

Such a circulating state does not persist indefinitely,
however, and cessations followed by restarted flows at a
new azimuthal angle occur sporadically [3, 7–10]. The
complex dynamics of the LSC is influenced by the heat
and momentum transport mechanisms, as well as by the
geometry and aspect ratio Γ (diameter over height) of
the fluid container. In experiments using a cylindrical
geometry with Γ = 1, the LSC occurs in a nearly vertical
plane, whereas for aspect ratio Γ = 0.5, two convection
rolls may coexist [11]. Recent studies also report that the
LSC flow-reversals and its tilted orientation are strongly
influenced by the corner-flows that form in a rectangu-
lar geometry [12]. The dynamics of a nearly-vertical,
single LSC can be modeled by a set of nonlinear stochas-
tic differential equations that describe the amplitude of
azimuthal temperature variations, δ, and the azimuthal
orientation angle, θ0 [13, 14]. This model is found to be
in excellent agreement with the typical fluctuations of the
LSC [13, 14]. Yet, the cessations require an extension of
the model, since boundary terms describing the thermal
and viscous diffusion become dominant terms when the

amplitudes are small, as they inevitably must be during a
cessation. With this extension, the model is able to pro-
vide an excellent description of the cessation rates, as well
as the LSC amplitude and azimuthal velocity probability
distribution functions (PDFs) including the tails [15].

The purpose of this Letter is to study the effect of
weak rotation on the statistics of the main degrees of
freedom, i.e. amplitude and azimuthal velocity, and the
LSC cessation events in RBC. Here the rotation rate Ω is
conveniently represented by the dimensionless convective
Rossby number, Ro = (2Ω)−1

√
α0g∆T/L, which mea-

sures the buoyancy relative to the Coriolis force. The
total heat transport, measured by the Nusselt number N
relative to heat diffusion, has a non-trivial dependence
on Ro, exhibiting three different regimes [10, 16, 17]: (i)
an LSC-dominant regime at Ro−1 <∼ Ro−1

c ' 0.4 where
buoyancy dominates over Coriolis effects, (ii) an Ekman-
vortex pumping regime at Ro−1

c < Ro−1 < Ro−1
max where

the Coriolis force dominates over the buoyancy force for
a non-vanishing Ro−1

c , and (iii) at Ro−1 > Ro−1
max (typ-

ically Ro−1
max ' 3 − 10 depending on Ra [10]) where the

velocity gradients, and thus heat transport by convection,
are suppressed via the Taylor–Proudman effect [10]. Here
Ro−1

c scales as 1/Γ due to a finite-size effect [18, 19], while
Ro−1

max is determined by an interplay between the Ekman
enhancement and the Taylor–Proudman depression.

In this work we focus only on weak rotations, where the
LSC is still present, namely in the regime 0<Ro−1 <∼ 0.6.
Recent experimental studies report a non-monotonic de-
pendence of the LSC mean amplitude on Ω ∼ Ro−1 [10].
The mean amplitude initially increases with increasing
Ro−1 until Ro−1 becomes close to (but below) a criti-
cal value, Ro−1

c . The origin of this increase is not well
understood, but may be associated with centripetal ef-
fects [20], see below. For higher Ro−1, the detaching
plumes from the thermal boundary layers (BLs) interact
with the Ekman-vortex structure that forms at Ro−1

c , so
that these plumes can no longer feed the LSC [21]. Thus,
the mean amplitude decreases at Ro−1 >∼ Ro−1

c . For

Ro−1 >∼ 0.6− 1 (depending on Ra, Pr and Γ), the mean
amplitude becomes comparable to the root-mean-square



2

temperature fluctuations about the mean, and thus be-
comes ill-defined [10]. This non-monotonic behavior of
the LSC mean amplitude on Ro−1 is accompanied by a
non-monotonic behavior of the LSC cessation frequency,
and this is what we calculate below. This dependence
contrasts with our result for the tails of the reorientation
statistics, namely the probability for a large angle change
in the LSC plane, which we show is almost independent
of the rotation strength in this weak rotation regime.

Statistics of the LSC dynamics with rotation:- The evo-
lution of the dimensionless LSC amplitude, ξ, and az-
imuthal angle, θ0, in the absence of rotations is governed
by the stochastic differential equations [15]:

ξ̇ = A+ αξ − βξ3/2 + fξ(t),

θ̈0 = −
(
α1ξ + β1

τθ̇
τδ

√
ξ

)
θ̇0 + fθ̇(t). (1)

Here, A is a constant related to the heat transport or
the inverse of the thermal BL width, ξ = δ/δ0 is the di-
mensionless LSC amplitude, where δ is the physical LSC

amplitude, δ0 ≈ ∆TσRe3/2/Ra is the mean LSC ampli-
tude, and σ = ν/κ is the Prandtl number. Furthermore,
the Reynolds number is defined as Re = (τδ/τθ̇)

2 � 1
where τδ and τθ̇ are the turnover times in the LSC and
azimuthal planes, respectively, while time in Eqs. (1) is
measured in units of the corresponding turnover times τδ
and τθ̇ [15]. Also, delta-correlated Gaussian stochastic
forcing terms fδ(t) and fθ̇(t) with amplitudes Dδ and Dθ̇
are included in Eqs. (1) to simulate the effect of turbulent
fluctuations. Finally, the coefficients α, β, α1, β1 = O(1)
are included to account for the geometric coefficients
from the spatial volume averaging procedure [13, 14].
Note, that in Eqs. (1) all tildes (which appeared in [15]
due to time rescaling) were removed for clarity.

In the presence of rotation, the equation for the LSC
amplitude [the first of Eqs. (1)] remains the same, since
the same drag and bouyancy forces drive the motion of
the LSC in the vertical plane. Yet, the coefficients in
front of these terms may depend on Ro, to account for
the experimental fact that the mean dimensionless LSC
amplitude ξ0 is a function of Ro−1. To find this Ro-
dependence, we notice that the coefficients α(Ro), β(Ro)
and A(Ro) are related to each other by the constraints
that the PDF P (ξ) is centered around ξ = ξ0 and has a
width Dδ [15]. Employing these constraints, we obtain

α(Ro) = 1− 3A/ξ0 , β(Ro) = ξ
−1/2
0 (1− 2A/ξ0) . (2)

Now we formulate a simple theory that can explain the
dependency of these coefficients as well as that of ξ0 on
Ω. We assume that α = α0, is constant (because the
geometrical coefficient in the buoyancy should not be af-
fected by rotation) and expand β = β0(1 + b1Ω + b2Ω2)
(assuming that the thickness of the viscous BL is de-
pendent on Ω), where α0 = 1 − 3A0, β0 = 1 − 2A0

and A0 = A(Ω = 0). In this way, we can find ex-
pressions for A(Ω) and ξ0(Ω), by equating these expres-
sions for α and β with Eq. (2), and keeping terms up to
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FIG. 1. (Color online). Shown are the values of ξ0 (triangles),
and A (squares). The dashed line is a parabolic fit. The up-

per inset shows β (triangles) compared with ξ
−1/2
0 (squares),

while the dashed line is a parabolic fit. The lower inset shows
α and the dashed line is a guide for the eye. All quantities
are normalized by their non-rotating values.

O(Ω2). We obtain ξ0(Ω) ' 1 − 2b1Ω + (3b21 − 2b2)Ω2

and A(Ω) = A0ξ0(Ω). Note, that plugging this into

Eq. (2), we obtain α(Ro) = α0 and β(Ro) ' β0ξ
−1/2
0 .

Because β(Ro) represents the inverse Rossby-dependent

width of the viscous BL, the latter increases as ξ
1/2
0 for

0 < Ro−1 < Ro−1
c , in agreement with recent experimen-

tal observations [20, 21]. The origin of the increase in the
viscous BL width in the weak-rotation regime can be as-
sociated with centripetal effects [20] that tend to increase
the BL width according to the Prandtl-Blasius theory.

In Fig. 1 we plot the experimental mean amplitude ξ0
and A (normalized by their value at zero rotation) as a
function of Ro−1. According to our theory, provided that
ξ0 is well-approximated by a parabolic expansion in Ω,
in the weak rotation regime, A/A0 should coincide with
ξ0/ξ0(0), and this is indeed the case. The insets in this
figure confirm the dependencies of α and β on Ω for two
different Ra numbers. Note that in order to extract A
from the experimental data, we have used the relation
A = BDδ/2 [15] where B and Dδ are specified below.

Since the equation for the LSC amplitude [the first of
Eqs. (1)] is independent of the azimuthal reorientation
angle θ0, we can analyse it separately by writing the cor-
responding Fokker-Planck equation and finding its sta-
tionary solution [15]. Defining the potential

V (ξ)=−BDδ

2
ξ−
(

1− 3BDδ

2ξ0

)
ξ2

2
+

2

5ξ0
1/2

(
1−BDδ

ξ0

)
ξ5/2

(3)
the frequency-dependent PDF, P (ξ,Ro) takes the form

P (ξ,Ro) = Ce−2V (ξ)/Dδ . (4)

Here C is a normalization constant, Dδ = Dδ(Ro) is
the PDF width in the Gaussian regime: P (ξ ≈ ξ0) ∼
e−(ξ−ξ0)2/(2Dδ), andB = B(Ro) is the logarithmic deriva-
tive of the PDF at small ξ, since P (ξ � 1) ∼ eBξ.
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FIG. 2. (Color online). In panels (a)-(f) shown are PDFs of
the LSC rescaled amplitude ξ for different Ro and Ra num-
bers. Each row represents a different Ra number. The exper-
imental PDFs are represented by triangles, while the fitting
curves (dashed line) are the analytical PDFs (4) with param-
eters B and Dδ determined experimentally for each Ro num-
ber. The width of the PDFs initially increases with increasing
Ro−1 while the slope of the left tail decreases. This can be
seen in panels (g) and (h) where we plot the experimental B
and Dδ as functions of Ro−1 for different Ra.

Furthermore, it has been shown that the cessation fre-
quency – the frequency of events that the LSC amplitude
goes below a threshold amplitude ξmin � 1 – is given by

ω−1 =
1

ξmin

∫ ξmin

0

dξ∗T (ξ∗) ; T (ξ∗) ∼ e−2D−1[V (ξ∗)−V (1)].

(5)
Here T (ξ∗) is the mean time it takes the amplitude to
reach ξ∗ � 1.

In order to compare the results for the PDF [Eq. (4)]
and cessation frequency [Eq. (5)] with experimental re-
sults, we extract the values of B(Ro) and Dδ(Ro) from
the experimental PDFs, just as was done for the non-
rotating case [15]. In Fig. 2, we compare experimental
and theoretical PDFs for different Ro and Ra numbers,
in the weakly-rotating regime. The theoretical predic-
tions hold well for various rotation frequencies, provided
that we use the corresponding frequency-dependent pa-
rameters. As Ro−1 ∼ Ω is increased, the width of the
PDF increases compared to the non-rotating case while
the slope of the left tail decreases. This functional depen-
dence of the experimental B and Dδ on Ro−1 is shown
in the lower panels of Fig. 2 for two different Ra number.

Finally, in Fig. 3 we compare the theoretical and ex-
perimental results for the cessation frequency as function
of Ro for different Ra values and observe good agreement.
Here, the threshold for cessation was chosen to be 0.15.

Rotation rate of the azimuthal plane:- In this section we
investigate the effect of weak rotation on the PDF for
the angular velocity of the azimuthal plane [the second
of Eqs. (1)]. Rotation brings about a Coriolis force which
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FIG. 3. (Color online). Cessation frequency (normalized by
its non-rotating value) as a function of Ro−1 for different val-
ues of Ra number. The triangles are experimental results,
while the squares are the theoretical predictions according to
Eq. (5). The cessation threshold chosen here was 0.15.

is proportional to ~Ω×~Vθ, where |~Vθ| ∼ ξ [13]. As a result,
the effect of rotation on the azimuthal dynamics amounts
to the addition of a term of the form ξΩΦ(θ0) to the

equation for θ̇0, where Φ = O(1) is some function of the
azimuthal angle [22]. Therefore, the second of Eqs. (1)
under rotation becomes

θ̈0 = ξΩΦ(θ0)−
(
α1ξ + β1

τθ̇
τδ

√
ξ

)
θ̇0 + fθ̇(t). (6)

As expected, the addition of the first term on the right-
hand-side of Eq. (6) changes the steady state solution for

θ̇ at ξ ' 1 from θ̇ = 0 at zero rotation, to θ̇ ∼ Ω at
Ω > 0 [since Φ(θ0) = O(1) and τθ̇/τδ � 1]. This has
been experimentally observed by Zhong and Ahlers [10]
in the weakly-rotating regime, below Ro−1

c . The reason
for this limitation is that the steady-state solution is valid
only as long as the parameters involved are of order unity,
which holds for not too large Ω, but breaks down for high
rotation frequencies. In the latter case, when Ekman
vortices start to form, the model becomes invalid.

Apart from the steady-state solution that represents
the mean angular velocity, here we are mainly interested
in the rare events of large deviations in ∆θ ∼ θ̇. The tails
of the PDF P (∆θ) were calculated in [15] for non-rotating
systems. Here, we show that these tails are unchanged
by the rotation. The reason is that the term due to ro-
tation added to Eq. (6) is proportional to ξ. As a result,
large deviations in ∆θ, which occur when ξ � 1, are still
governed by the term proportional to

√
ξθ̇0 in Eq. (6),

which is dominant in the regime of ξ � 1 [15]. This term
does not depend on the rotation frequency. Therefore,
the tails of P (∆θ) remain unchanged when rotation is
introduced, as shown in Fig. 4.

Indeed, in the non-rotating case the tails have been
found to scale as a power law with exponent −4, while
experimental results for non-rotating systems demon-
strate a power-law tail with exponent ∼ −4.3 [15]. In
Fig. 4(b) shown are experimental PDFs, P (∆θ), for dif-
ferent Ro numbers. In panel (c) we show PDFs aver-
aged over a wide range of Ro−1 numbers [10] (generally
0 < Ro−1 < 0.6), for different Ra numbers. The dashed
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FIG. 4. (Color online). PDF P (∆θ) as function of ∆θ. In (a)
shown are experimental PDFs for four different Ro numbers
(see legend in panel b) for Ra = 1.8 × 1010. As Ro−1 ∼
Ω increases, the left tail becomes fatter while the right tail
remains more or less constant. In (b) shown are the same
PDFs on a log-log plot, demonstrating that the tail is well
described by a power law independent of Ro; the dashed line
is a power law with exponent −4.3. In (c) shown are PDFs,
averaged over a wide range of Ro−1 numbers (generally 0 <
Ro−1 < 0.6), for different Ra. The dashed line is the same as
in panel (b). This panel implies that the rare-event statistics
of P (∆θ) are universal and independent of Ra and Ro.

lines are the theoretical prediction: a power law curve
with exponent −4.3. The excellent agreement between
theory and experiment indicates that the exponent for ro-
tating systems remains unchanged compared to the non-
rotating case. Note, that panels (b) and (c) are shown on
a log-log scale which only allows us to show the positive
θ̇ region. We have checked that the left and right tails of

the PDF scale with the same exponent within 5%.

Angular-dependent asymmetry of the PDF for azimuthal
fluctuations:- We conclude by pointing out an interesting
corollary of our analysis. From Fig. 4(a), it is apparent
that in contrast to the non-rotating case, the PDF P (∆θ)
develops an asymmetric shape as a function of ∆θ that
is an increasing function of the rotation rate, up to the
vicinity of 1/Ro ∼ 1/Roc. We speculate that this asym-
metry in the azimuthal velocity fluctuations is related
to spiral defects and their preferred motion. Near the
onset of convection, spiral defects are formed in the pres-
ence of rotation and their azimuthal motion is against
the direction of rotation [23]. With increasing Ra num-
ber, the flow becomes more turbulent and the effect of
the individual vortices on the azimuthal velocity statis-
tics diminishes [24]. However, as the strength of the LSC
decreases when Ro−1 exceeds Ro−1

c , the flow, hence the
velocity statistics, is more influenced by the preferred
motion of the spiral defects in the presence of rotation,
which would explain the observed broadening of the left-
tail of the PDF P (∆θ) corresponding to high fluctuations
against the direction of rotation. This effect of the left-
tail broadening with increasing Ω can be clearly seen in
Fig. 4(a). However, the mechanism relating the asymme-
try in P (∆θ) to spiral defects needs further elaboration,
and is beyond the scope of this paper.
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