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We study a frustrated quantum Ising model relevant for Ca;C0,0g that consists of a triangular lattice of
weakly-coupled ferromagnetic (FM) chains. According to our quantum Monte Carlo (QMC) simulations, the
chains become FM and form a three-sublattice “up-up-down” structure for 7 < T¢;. In contrast, long-period
spin-density-wave (SDW) microphases are stabilized along the chains for T¢; < T < T,.. Our mean field
solutions reveal a quasi-continuous temperature dependence of the SDW wavelength, implying the existence of
metastable states that explain the very slow dynamics observed in Ca;Co,0s. We also discuss implications of
microphases for the related multiferroic compounds Ca;CoMnOg and Lu, MnCoOg.

PACS numbers: 75.10.Jm 75.25.-j 75.40.Mg

Introduction.—Geometric frustration, low-dimensionality,
and quantum fluctuations can lead to exotic phase transitions
and states of matter [1, 2] such as the field-induced magne-
tization plateaus of SrCu,(BO3), [3-5], the spin-driven “ne-
matic” transition in pnictides [6-9], and dimensional reduc-
tion in BaCuSi;Og [10, 11]. CazCo,04 is another example
comprising a triangular lattice of FM Ising chains coupled by
weak antiferromagnetic (AFM) exchanges. This compound
exhibits field-induced magnetization steps whose heights de-
pend on the field sweep history and rate [12-16]. We will
show that this out-of-equilibrium behavior has its roots in ex-
otic equilibrium properties that can be extended to the related
multiferroic compound Caz;Co,_,Mn,Og [17-22].

The Co** ions (Co II) on the trigonal prism sites of
Ca3Co0,04 contain 3d° localized electrons that generate an
S = 2 spin with large Ising-like anisotropy [23-26]. These
ions form a triangular lattice of FM Ising chains along the c-
axis (Fig. 1) and the structure comprises three sublattices of
layers stacked along the c-axis in an ABCABC ... configura-
tion. Although the AFM inter-chain couplings J, and J3 [27]
[Fig. 1(a)] are an order of magnitude smaller than the intra-
chain FM exchange, |/;| = 2 x 10K [23, 27], we will show
that they strongly affect the intra-chain spin correlations over
a window of temperatures below T..

The initial interest in CazCo,0¢ was triggered by the ob-
servation of out-of-equilibrium magnetization steps measured
below ~ 8K and ~ 3.6T that appear at regular field inter-
vals. Previous works invoked a “rigid-chain model”: ev-
ery chain is replaced by a single Ising spin by assuming
T < |Ji| [28-32]. Each spin of the resulting triangular lat-
tice Ising model (TLIM), represents the magnetization of the
whole chain and it is flipped if gugH overcomes its molecular
field. Within this simplified framework, the regular field in-
tervals result from the equally-spaced discrete molecular field
spectrum [28]. However, this 2D scenario was challenged
by the recent discovery of long-wavelength intra-chain spin-
density-wave (SDW) ordering below 7, ~ 25K [16, 33, 34].
Motivated by this discovery, Chapon initiated the study of a
more realistic 3D lattice model by using a random-phase ap-
proximation (RPA) which is only valid close to T = T, [35].

By combining QMC simulations and mean field (MF) solu-
tions of the 3D quantum Ising model relevant for Ca3Co,Og,

we reproduce most of the measured zero-field properties. A
sequence of soliton lattices that lead to the observed SDW
order appears for ¢t < T < T, through the competi-
tion between intra- and inter-chain couplings. While the
transverse field stabilizes a ferrimagnetic (FIM) up-up-down
(UUD) state below T¢; via order-by-disorder [36], very small
longer-range exchange couplings, not included in our model,
should be responsible for the actual 7 = 0 ordering of
Ca3C0,04 [37]. Our MF solutions show that the ordering
wave-vector changes quasi-continuously as a function of 7,
implying the existence of many competing metastable states.
Even though the modulation wavelength increases for lower
T and the rigid-chain picture is apparently applicable for
T < T¢y, the relaxation is known to be extremely slow and
practically never complete [16]. According to our results, the
observed slow dynamics for 7 < 10K [16] is a direct con-
sequence of the multiple SDW microphases that appear for
Tcr < T < T.. This exotic regime can only be captured by
solving the 3D model beyond the RPA [35].

Model.—We use a pseudospin-1/2 to represent the lowest
energy doublet (S* = +2) of the Co II ions. The Hamiltonian
is [34, 35]
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where o; is the vector of Pauli matrices for the ion i on the
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FIG. 1. (Color online) (a) Exchange couplings between the Co II
ions: The FM coupling J; (a thick solid line) and the AFM couplings
J (thin solid lines) and J5 (dash lines). The lines within layers are
projections of the inter-chain couplings. (b) The lattice projected on
the ab plane. Each dot represents a chain.
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FIG. 2. (Color online) Upper panels show the specific heat while
lower panels show |0'z:0,w:0|2 for J, = J; = 0.1)J;| and " = 0.3]J;].
OBC (PBC) is imposed in the ¢ direction in (a) and (c) [(b) and (d)].
The arrows indicate a tiny anomaly in the low-T regime. The insets
provide enlarged views.

3D lattice shown in Fig. 1, J;; = J; for nearest-neighbor
(NN) sites along chains, and J;; = J,(J3) for NN sites on
NN (next-NN) layers [Fig. 1(a)]. Previous measurements in-
dicate that J; is FM (J; < 0) while J,,J3 < |Ji| are AFM
[14]. H = g.upS B is the external magnetic field along the c-
axis (g, is the gyromagnetic factor), while the transverse field
is included for accelerating the QMC relaxation and remov-
ing the macroscopic ground state degeneracy without invok-
ing smaller and unknown longer-range exchange couplings.
We will assume J, = J3 = 0.11/4|, T = 0.3|/y], and H = 0
unless otherwise specified [38].

We use the continuous-time QMC method [39, 40] to com-
pute the thermodynamic phase diagram. There is no sign
problem because the frustrated terms are diagonal. The clus-
ters can expand along each chain and the imaginary-time (7)
direction. The weight factors due to J, and J3 appear in the
cluster-flip attempt. We use the replica exchange method [41]
for the lowest-7 simulations [42]. The simulated lattice has
L x L x L unit cells with L. = 10L ( Niayer = 3L, layers).

Figures 2(a) and 2(b) show the specific heat C obtained
from our QMC simulations for periodic (PBC) and open
boundary conditions (OBC) along the c-axis, while PBC are
applied in the @ and b directions. There are three different
regimes. The A peak at T, ~ 1.4|/J,| indicates a 3D phase tran-
sition from a paramagnetic phase to an ordered state. In ad-
dition, there are two different ordered regimes below T, sep-
arated by a tiny peak at 7 < 0.1]|J/;], which we will refer to
as intermediate- and low-T regimes. While the position of
this peak exhibits moderate size dependence, the consistent
shift towards higher T for larger values of L implies robust-
ness of the lowest-7" phase against size effects. The sensitiv-
ity of C(T) to the boundary conditions along the c-axis for
T < T, is caused by a mismatch between the wave-vectors of
the finite size lattice and the optimal SDW wave-vector in the
intermediate-T regime. In what follows we adopt OBC along

the c-axis because it is more convenient for detecting modula-
tions with wavelength comparable t0 Njay., (see below).

FIM state in the low-T regime.—We will first discuss the
state of equilibrium in the low-T regime. If I' = T = 0, ev-
ery chain is FM and the ground state subspace has the well-
known massive degeneracy of the TLIM [43]. The lowest or-
der correction to the ground state energy is O(I'?). We intro-
duce the hexagonal plaquette variables Tél)i = (1/2) Xy, a'j.
with (ij), denoting sites connected by J, (u = 2,3). Since
any unperturbed ground state satisfies o-f.‘rz(mi = —I‘rz(y)il and
sz)i = Tf3)[ = 77, the energy cost of flipping a spin of the ion i
is AE; = 4|J1| + 4J|75|, where J = (J> + J3)/2. Therefore, the
leading non-trivial contribution to the second-order effective
Hamiltonian, HS™ = — 3, I%/AE;, is

I2Jj? s
HT = — I77)? + 0( ) + const. 2)
2 4|11|3Z ' /1[4

i

Here we have used that the projection of ;|7%| in the
unperturbed ground state subspace is a constant. Conse-
quently, the lowest-order non-trivial effective interaction is
a FM coupling between the next-NN chains that stabilizes
the three-sublattice UUD state of FM chains. This FIM
state has a spontaneous magnetization at 1/3 of the saturation

value. To verify this numerically, we calculate (Io-fl =0,w=0|2> =

(|N’1,B’1 Zifoﬂ dm’f('r)|2). Figures 2(c) and (d) show that
(|0'; :0’w:0|2) approaches (1/ 3)? = 1/9 in the low-T regime in
agreement with our analytical result. The corresponding or-
dering temperature coincides with the tiny anomaly in C(T).

SDW order in the intermediate-T regime.—We will next
discuss the most important intermediate-7" regime. Fig-
ure 3 shows the equal-time structure factor S(q) =
N1 i) e"'q'(’f"f)(a'lz.aj) slightly below T, (at T = 1.3|J4]),
which was extracted from the major peak of C(T'). The Bragg
peak at g3 = Qj is slightly shifted from g3 = 27/3 indi-
cating modulated spin ordering along the c-axis [Fig. 3 (a)],
while Fig. 3(b) clearly shows that each layer is FM. This
is a three-sublattice SDW order with a relative phase shift
of 27r/3; the numerical results are consistent with (o ) =~
acos(q'riz + ¢y) (v € {A,B,C}) in the single-harmonfc ap-
proximation, where ¢’ = Q3 — 2n/3, r;3 is the layer index
of site i, and ¢c — ¢ = ¢dp — ¢4 = 2n/3. The very small
value of |¢’| implies that the modulation period is very long:
2nlg’|t =~ 3x 10 at T = 1.3|J;]. These features become even
more evident in the correlation functions of average moments
per layer m; = L™ 3. .., 077 (Fig. 4). The abrupt decay close
to the edges is a consequence of OBC. Although larger sys-
tems are necessary to determine the precise T-dependence of
q’, the obtained long-period modulation is in excellent agree-
ment with recent experiments [16, 33, 34].

We now discuss the origin of the SDW and note that this or-
dering does not appear in apparently similar lattices. For ex-
ample, hexagonal lattice Ising systems, such as CsCoCl; and
CsCoBrs, exhibit the partially-disordered AFM state for inter-
mediate 7', even though they are also realizations of weakly-
coupled Ising FM chains that form a triangular lattice [44].
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FIG. 3. (Color online) S(gq) at T = 1.3|Jy| for J, = J3 = 0.1|J4],
I' = 03|/i], L = 16 (Niyer = 480) and OBC along the c-axis. The
vertical lines in (a) indicate g3 = 27/3 and 4x/3, and the inset shows
an enlarged view around g3 = 27r/3. The wave-vector is varied as (a)
q = (0,0,g3) and (b) g = (q1,0, Q3). Error bars are smaller than the
symbol size. The line is a guide to the eye.
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FIG. 4. (Color online) (mym;) for the same J,, J3, I', T, and L as in
Fig. 3. OBC are imposed in the ¢ direction and the center layer of the
simulated lattice is chosen as / = 0.

The crucial difference is in the connectivity of the inter-chain
couplings: while the hexagonal lattice contains frustrated
loops only within each layer, J, and J3 connect spins on dif-
ferent layers (Fig. 1) and consequently compete against the
dominant intra-chain coupling J;.

Our numerical results suggest a natural MF approximation.
We assume that each layer is FM as it is indicated by our QMC
simulation. Indeed, the intra-layer effective FM coupling is
induced not only by I but also by thermal fluctuations (it ap-
pears in the second-order contribution of a high-7" expansion).
In fact, our MC simulations show that the microphases still
exist over an extended window of temperatures even in ab-
sence of the transverse field. As expected, this phenomenon is
entirely driven by the classical exchange interaction between
Ising variables on a particular type of geometrically frustrated
lattice. Therefore, we will take I' = O in what follows. The
MF equations for the magnetization of each layer are

(my) = tanh Bh 3)
with hy = =Ji((my3) + (m=3)) — 3((mper) + (m-g)) —

3J3((mys2) + (my_2)). The wave-vector Q. of the highest-T or-
dered phase is given by the minimum of Jyig(g) = 2J; cos 3¢+
6Jycosq + 6J3cos2q, and T, = —Jur(Q,) [35]. If J, and
Js are AFM, any finite inter-chain coupling leads to incom-
mensurate SDW ordering at 7 = T, [35]. The MF solution
for T < T, is obtained by solving Eq. (3) numerically. Fig-
ure 5 shows ¢’(T) = Q(T) — 2n/3 (Q is the ordering vector)
obtained by imposing PBC and by varying Njaye up to 2000
(J» = J3 = 0.1|J1]). The ¢’(T) curve is qualitatively similar to
the ones obtained for the ANNNI model [45]. However, we
are not aware of any unambiguous realization of this prototyp-
ical model in Mott insulators. The ¢’ = 0 phase (FM chains)
stabilized at the lowest temperatures is the UUD FIM state ob-
tained from our analytical approach and from the QMC simu-
lations. This state becomes unstable for T > T¢p ~ 2.171]J4|
(the overestimation of T¢; is expected for a MF approxima-
tion), above which ¢’(T) changes quasi-continuously. The
obtained amplitude |g’| is small in the entire regime, in agree-
ment with experiments [16, 33, 34] and with our QMC results.
The optimal states are determined through close competition
among many metastable states. This also implies that the fine
structure of ¢’(T') should be very sensitive to small additional
couplings that are not included in our model. However, the
quasi-continuous change of ¢’(T') is a robust feature.

A continuum approximation of our MF theory (analogous
to Ref. 46) shows that the SDW phase corresponds to a quasi-
continuous sequence of microphases driven by entropic ef-
fects stabilizing a finite concentration of solitons (kinks) along
the chains. The solitons form domain walls perpendicular to
the c-axis. They crystallize into a lattice and the mean separa-
tion A between walls determines ¢’ o« A~!. The value of A is
controlled by a balance between the chemical potential of soli-
tons and an effective repulsive interaction that decays expo-
nentially in the distance between solitons [46]. The outcome
of this balance is that A diverges logarithmically in 7 — Ty
[our result (Fig. 5) reproduces this behavior]. A number of
metastable states appear in this regime with different mod-
ulation periods. They are separated by free energy barriers
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FIG. 5. (Color online) ¢’(T') obtained from the MF theory (J, = J3 =
0.1]J1]). The inset shows an enlarged view.
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FIG. 6. (Color online) Magnetization curve obtained by using a
relaxation process described in the text, for J, = J3 = 0.1/,
I =0.3Ji], L = 12 (Nyayer = 360), and OBC in the ¢ direction.

associated with the creation/annihilation and redistribution of
magnetic domain walls. These barriers give the dominant con-
tribution to the observed slow dynamics because the relevant
relaxation modes are suppressed at low 7.

Magnetization curve.—Finally, we present M(H) obtained
in a simulated relaxation process in the realistic 3D model.
We equilibrate the system at a given 7 for H = 0 and then
increase H gradually. We take 10* steps at each value of H,
which is insufficient for equilibration at 7 < T,. After reach-
ing a sufficiently high field, we go back to H = 0 in the same
way and stop. For H # 0, we only allow clusters to expand
in the 7 direction, which corresponds to a classical single spin
flip when I' = 0. Although our dynamics is different from
the real dynamics, our results reproduce the main experimen-
tal observations, except for the less clear steps that appear
at the highest-fields (above ~ 3.6 T) [12-16]. As is shown
in Fig. (6), slightly below T, (T = 1.3|Ji|), we only find a
small feature suggesting a 1/3 plateau, which becomes more
pronounced at 7 = 0.8|J;| accompanied by small hysteresis.
Steps at regular magnetic field intervals appear at T = 0.3|J4],
which is still inside the SDW phase for H = 0. The reproduc-
tion of equidistant steps in the relaxation dynamics supports
the notion of metastability of the observed low-T states. The
heights of the steps obtained with the 3D model differ from
the values obtained with the rigid-chain model [28-32].

Conclusions.—We reproduced the temperature dependent
SDW state that was reported by recent neutron diffraction ex-
periments in CazCo,Og¢. More importantly, we showed that
the SDW phase arises from a crystallization of domain walls
that results in a large number of competing metastable states
for Ty < T < T,. By uncovering these microphases in
Caz3Co,0¢4, we explained the origin of the extremely slow
relaxation of the Bragg peaks [16]. Disorder induced pin-
ning of the domain walls that exist in the microphases also
provides a natural explanation of the observed linear-7" con-
tribution in Ca3Co,0¢ [47]. Order-by-disorder induced by
a small transverse field leads to a FIM phase in the low-T

regime. However, this result does not explain the recent obser-
vation of an order-order transition to a different commensurate
phase [37]. Therefore, although the FIM state is the ground
state of Eq. (1), other subtle perturbations, such as intra-layer
AFM exchange interactions between next-NN chains, must be
included to explain the actual 7 = 0 ordering of Ca3Co0,0s.

From our results we predict that microphases should also
exist in the related multiferroic compounds Lu,MnCoOg [48]
and Ca3Co,_,Mn,O¢ (x =~ 1) [17-22]. Since magnetic do-
main walls carry an internal electric dipole moment in these
materials [49], the microphases should be sensitive to an ex-
ternal electric field that introduces a bias between walls with
opposite electric polarizations. Indeed, the dielectric constant
of both compounds exhibits a broad peak below T, [19, 48].
We propose that this peak arises from the long-wavelength
modulation of the electric dipole moments induced by differ-
ent crystallization of magnetic domain walls (microphases).
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