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A first-principles-based approach is developed to simulatedynamicalproperties, including complex permit-
tivity and permeability in the GHz-THz range, of multiferroics at finite temperatures. It includes both structural
degrees of freedom and magnetic moments as dynamic variables in Newtonian and Landau-Lifshitz-Gilbert
(LLG) equations within molecular dynamics, respectively,with the couplingsbetween these variables being
incorporated. The use of a damping coefficient and of the fluctuation field in the LLG equations is required to
obtain equilibrated magnetic properties at any temperature. No electromagnon is found in the spin-canted struc-
ture of of BiFeO3. On the other hand, two magnons with very different frequencies are predicted via the use of
this method. The smallest-in-frequency magnon corresponds to oscillations of the weak ferromagnetic vector
in the basal plane being perpendicular to the polarization,while the second magnon corresponds to magnetic
dipoles going in-and-out of this basal plane. The large value of the frequency of this second magnon is caused
by staticcouplings between magnetic dipoles with electric dipoles and oxygen octahedra tiltings.

PACS numbers: 75.85.+t 31.15.xv 76.50.+g 75.30.Gw 76.60.Jx

Multiferroics form a promising class of materials exhibiting
a rare coexistence between ferroelectricity and magnetism.
They are experiencing a huge regain in interest, partly for de-
signing novel advanced technologies (see, e.g., Refs. [1, 2]
and references therein). The development and use ofab-
initio atomistic schemes recently had helped in gaining a
better knowledge of these complex materials. For instance,
first-principles-based simulations explained why so few com-
pounds are multiferroics [3] and how their magnetic ordering
can be controlled by the application of electric fields along
specific directions [4–7]. They also provided a deep insight
into the strain-driven phase transition towards states with gi-
ant axial ratio and large out-of-plane polarization in BiFeO3

(BFO) multiferroics [8–11]. Similarly,ab-initio techniques
revealed that a dramatic enhancement of magnetoelectric co-
efficients can be achieved near this latter phase transition
[12, 13]. Another example is the prediction of array of fer-
roelectric (FE) vortices in BFO films [14] – that was then
experimentally confirmed [15]. Interestingly, all these latter
breakthroughs from first principles concernedstatic proper-
ties of multiferroics. On the other hand, one particularly chal-
lenging issue that remains to be tackled by atomistic methods,
in general, and by first-principles techniques, in particular, is
the prediction ofdynamicalproperties of multiferroics at fi-
nite temperature. One particular reason behind such lack of
numerical tool is that ionic variables (e.g., polarizationand/or
tilting of oxygen octahedra) obey Newton’s equations of mo-
tion while the spin degrees of freedom do not (such latter de-
grees of freedom follow Landau-Lifshitz [16] or even more
complicated equations such as Landau-Lifshitz-Gilbert (LLG)
[17]). In order to realistically mimic dynamical properties of
multiferroics, one thus needs to develop a tool where different
equations are simultaneously obeyed, and that also includes
the coupling between ionic and magnetic variables. Moreover
and in order to predictfinite-temperaturedynamics of multi-

ferroics, this hypothetical tool should also be able to control
(at the same time) the temperature associated with ionic mo-
tions and the temperature associated with magnetic degrees
of freedom. Such simultaneously control is not an easy task
to accomplish. On the other hand, developing such code can
be of large benefits. For instance, it may help in understand-
ing what is the nature of the excitation, having a frequency
that is larger than typical magnon frequencies but smaller than
phonon frequencies, that has been recently observed in BFO
systems (see Ref. [18] and Fig. 2 of Ref. [19] for the “mys-
terious” excitation having a frequency of the order of 30-60
cm−1). Can it be an electromagnon [20–22], as suggested in
Ref. [18]?

The purpose of this Letter is to demonstrate that it is possi-
ble to develop such anab-initio scheme, and to apply it to the
study of BFO. It is found that LLG equations, in which a re-
alistic damping coefficient is used and in which a fluctuation
field is incorporated, coupled with classical Newtonian equa-
tions allow to reach the equilibrium states of both the struc-
tural and magnetic variables at any temperature. The use of
this tool also yields the computation of the complex electric
and magnetic susceptibilities for any frequency in the GHz-
THz range. In particular, it predicts that the aforementioned
mysterious excitation is in fact a magnon rather than an elec-
tromagnon, and that its large frequency originates from static
(rather than dynamic) couplings between the magnetic dipoles
with electric dipoles and oxygen octahedra tilting.

Here, we first take advantage of the first-principles-based
effective Hamiltonian developed for BFO systems [23, 24].
Its total internal energy,Etot, is written as a sum of two main
terms:

Etot =EFE-AFD({ui}, {η}, {ωi})

+ EMAG({mi}, {ui}, {η}, {ωi}), (1)
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whereui is the local soft mode in unit celli, which is directly
proportional to the electrical dipole centered on that cell. {η}
is the strain tensor, and contains both homogeneous and inho-
mogeneous parts [25, 26]. Theωi pseudo-vector character-
izes the oxygen octahedra tilt, that is also termed the antifer-
rodistortive (AFD) motion, in unit celli [23]. mi is the mag-
netic dipole moment centered on the Fe-sitei and has a fixed
magnitude of 4µB [27]. EFE-AFD is given in Ref. [28] and in-
volves terms associated with ferroelectricity, strain andAFD
motions, and their mutual couplings.EMAG gathers magnetic
degrees of freedom and their couplings, and is given in Refs.
[23, 24]. Note that the use of this effective Hamiltonian ap-
proach withinMonte-Carlo(MC) simulations was shown to
(i) correctly yield theR3c ground state that exhibits a coexis-
tence of a spontaneous polarization with antiphase oxygen oc-
tahedra tilt in BFO bulks [23]; (ii) provide accurate Neel and
Curie temperatures, and intrinsic magnetoelectric coefficients
in BFO bulks and thin films [13, 23, 29]; and also (iii) repro-
duces the spin-canted magnetic structure that is characterized
by a weak magnetization superimposed on a large G-type an-
tiferromagnetic (AFM) vector in BFO films (Note that this
spin-canted structure originated from the AFD motions rather
than the polarization) [24]. Note, however, that the current
version of this effective Hamiltonian approach does not yield
a spin cycloid structure in BFO bulks, unlike in experiments
[20]. The probable reason for that is either the lack of an ad-
ditional energetic term that generates such cycloid or thatthe
period of the cycloid [20] is too large to be mimicked by atom-
istic simulations. The present results should thus be relevant
to BFO thin films (for which no cycloid exists) [30, 31].

Here, we decided to combine the effective Hamilto-
nian scheme within an originalMolecular Dynamics(MD)
scheme, in order to be able to predictdynamicalproperties.
Technically, and as done in References [32, 33, 35], Newto-
nian equations are implemented for the{ui}, {η}, {ωi} vari-
ables, with the corresponding forces appearing in these equa-
tions having been obtained by taking partial differential of the
Etot energy of Eq. (1) with respect to each variable. As also
previously implemented [32, 33], the temperatures of these
lattice variables are controlled by Evans-Hoover thermostats
[36]. The novelty here is to also include the dynamics of the
magnetic moments on the same footing than the dynamics of
the structural variables at a given temperature (note that we are
not aware of any previous study addressing such simultaneous
“double” dynamics, and that controlling temperature for the
magnetic sublattice is a challenging problem [17, 37, 38]).For
that, we implemented the stochastic Landau-Lifshitz-Gilbert
(LLG) equation [17] for themi’s degrees of freedom:

dmi

dt
=− γmi ×

[

B
i
eff (t) + b

i
fl (t)

]

− γ
λ

|mi| (1 + λ2)
mi ×

{

mi ×
[

B
i
eff (t) + b

i
fl (t)

]}

,

(2)

whereBi
eff = −∂Etot/∂mi is the effective magnetic field act-

ing on theith magnetic moment,γ is the gyromagnetic ratio,

λ is the damping coefficient andbifl is a fluctuation field that
also acts on theith magnetic moment. As we will see be-
low, the introduction of this latter fluctuation field is crucial
to obtain correct magnetic properties in a multiferroic at finite
temperature, as consistent with previous studies done on mag-
netic systems [39, 40]. Technically, we use the Box-Muller
method (that generates Gaussian distributed numbers for each
magnetic moment) to simulatebifl and to enforce the following
conditions to be obeyed by this fluctuation field at the finite
temperature,T [17, 39]:

〈

b
i
fl

〉

=0, (3)
〈

bifl,α (t1) b
i
fl,β (t2)

〉

=2
λkBT

γ |mi|
δα,βδ (t1 − t2) , (4)

whereα andβ denote Cartesian coordinates andt1 and t2
are two different times.〈〉 indicates an average over possi-
ble realizations of the fluctuating field [17],δα,β is Kronecker
delta function andδ (t1 − t2) is a Dirac delta function. A
semi-implicit method devised by Mentinket al [41] is adopted
here to (i) properly integrate the LLG equation, which is a
Stratonovich stochastic differential equation [17] (the need to
properly integrate LLG equation is a pivotal point that has
been discussed in several studies [17, 41–45]); and (ii) to en-
force the conservation of the magnetic moments’ magnitude.
The Mentink algorithm is efficient by limiting the matrix in-
version procedure – which is needed by an implicit integra-
tor – for each magnetic moment at each time step. We have
checked that this algorithm indeed conserves the magnitude
of the individual magnetic moments very well, and satisfies
our need for efficiency and stability. Simulations on a periodic
12×12×12 supercell (8,640 atoms) are performed within the
presently developed MD scheme to obtain finite-temperature
properties of BFO. The system is first equilibrated at a cho-
sen temperature and pressure (NPT ensemble), and then, de-
pending on the purpose of the simulation, we either continue
having NPT steps to extract static properties, or adopt NVE
steps to obtain time-resolved properties, such as autocorrela-
tion functions of electric or magnetic dipoles, to predict dy-
namical properties. A time step of 0.5 fs is used in all simula-
tions.

One important problem to address when dealing with dy-
namics of magnetic degrees of freedom and the LLG equation
is to determine therealistic value, or range of values, of the
damping coefficient for a given system. One way to solve such
problem is to realize that MC and MD should give identical
results forstatic properties at any temperature. As a result,
MC can be used as a way of gauging MD simulations, and ex-
tracting the proper damping constantλ [46]. We numerically
found that, at any temperature,λ has little effect on the spon-
taneous polarization and oxygen octahedra tilting, therefore
yielding MD results being similar to the MC predictions for
these structural properties for a wide range of damping coeffi-
cients. In fact, the effect ofλ can be clearly seen when inves-
tigatingmagneticproperties in the multiferroic BFO – as con-
sistent with the fact thatλ “only” appears in the spin equations
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of motions. Consequently, Fig. 1 shows the temperature evo-
lution of theL magnitude of the G-type AFM vector for differ-
entλ values within the MD scheme, as well as, the MC predic-
tion for such quantity. Moreover, parts (a) and (b) of this fig-
ure display the results when the fluctuation field is neglected
and accounted for, respectively, in the MD simulations, in or-
der to also reveal the importance ofb

i
fl on finite-temperature

magnetism. One can see that, without the fluctuation field, (i)
MD simulations withλ & 1.0×10−4 give an AFM vector that
is significantly larger than that from the use of the MC tech-
nique for any temperature ranging between 10 K and 800 K,
and therefore also generates a larger Neel temperature; while
(ii) for damping coefficients smaller than1.0× 10−4 (includ-
ing the case ofλ = 0), the MD results are consistent with the
MC calculations for temperatures larger than 250 K but yield
too small AFM vectors for lower temperatures [47]. There-
fore, not a single properλ value allowing the MD simulations
of the AFM vector to match the MC results across all temper-
atures can be found without a fluctuation field. On the other
hand, Fig. 1 (b) demonstrates that a wide range ofλ (namely,
1.0 × 10−4 ≤ λ ≤ 1.0 × 10−1) leads to a satisfactory agree-
ment (i.e., a difference of less than 3%) between the MD and
MC results at any temperature,when the fluctuation field is
included. Such results thus prove the crucial importance of
a fluctuation field for accurately modelling finite-temperature
spin dynamics in multiferroics. Note also that a large range
of λ can be adopted to obtain equilibrated static properties,
which makes the MD approach suitable to model different
multiferroic/ferromagnetic bulks or nanostructures thatmay
have very different damping constants due to different damp-
ing mechanisms [48].

Let us now use the proposed MD scheme, incorporating the
fluctuation field and choosingλ = 1.0×10−4, to compute the
complex electric and magnetic susceptibilities of BFO, to be
denoted byχe andχm, respectively. Such quantities can be
calculated as follows [32, 49, 50]:

[χe (ν)] αβ =
1

ε0V kBT
[〈dα(t)dβ(t)〉+

i2πν

ˆ

∞

0

dtei2πνt 〈dα (t) dβ (0)〉

]

, (5)

[χm (ν)] αβ =
µ0

V kBT
[〈Mα(t)Mβ(t)〉+

i2πν

ˆ

∞

0

dtei2πνt 〈Mα (t)Mβ (0)〉

]

, (6)

whereν is the frequency whileα andβ define Cartesian com-
ponents – with thex, y andz axes being along the pseudo-
cubic [100], [010] and [001] directions, respectively.d (t)
andM (t) are the electric and magnetic dipole moments at
time t, respectively. Here, we focus on a fixed temperature of
20 K, for which the crystallographic equilibrium state isR3c.

Figure 2 (a) shows the isotropic value of
the [χe (ν)]α,β dielectric response, that is
{

[χe (ν)]xx + [χe (ν)]yy + [χe (ν)]zz

}

/3. Four peaks can

be distinguished, having resonant frequencies of151 cm−1,

176 cm−1, 240 cm−1 and 263 cm−1. They correspond to
E, A1, E andA1 symmetries, respectively [51] Not all the
modes appearing in measured Raman or infrared spectra
[19, 52–59] can be reproduced by our simulations because
of the limited number of degrees of freedom included in the
effective Hamiltonian. In particular, the modes observed
around 74 and 81 cm−1, and that are E(TO) and E(LO)
modes, respectively, according to Ref. [59], are missing in
our computations. Moreover, we numerically found that the
first two (lowest-in-frequency) peaks of Fig. 2(a) are mostly
related to the sole FE degree of freedom incorporated in
the effective Hamiltonian scheme, while the last two peaks
have also a significant contribution from AFD distortions –
as consistent with Ref. [60]. As revealed in Refs. [33, 34],
bilinear couplings between the FE and AFD modes in theR3c
phase allow the AFD mode to acquire some polarity, which
explains why these last two peaks emerge in the dielectric
spectra.

Regarding the permeability,two peaks can be seen in Fig.
2(b). Their predicted resonant frequencies are∼ 7 cm−1 and
∼ 85 cm−1, respectively [61] Since none of the frequencies
coincides with the dielectric resonant frequencies shown in
Fig. 2(a), we can safely conclude that they are not electro-
magnons. They are rather “solely” magnons. Interestingly,
we further numerically found that the lowest-in-frequency
magnon entirelydisappearswhen we switch off in our sim-
ulations the parameter responsible for the spin-canted struc-
ture of BFO. In other words, the purely AFM G-type structure
does not possess such magnon. Moreover, the video shown in
the Supplementary material S1 demonstrates that this magnon
is associated with the rotation of magnetic dipolesinsidethe
(111) plane (that contains the polarization). In other words,
this magnon is the low-in-frequency excitation (possessing a
gap) that has been predicted in Refs. [62, 63], and that corre-
sponds to the oscillation of the weak ferromagnetic moment
about its equilibrium position in the basal plane [64]. Let us
now try to understand the origin of the second magnetic peak,
for which the frequency is much larger than those of typical
magnons (that are usually lower than 20 cm−1) but is smaller
than the phonon frequencies shown in Fig. 2a (this second
peak is thus consistent with the “mysterious” excitations ob-
served in Refs. [18, 19]. This second magnetic peak is as-
sociated with fast oscillations of the magnetic dipoles going
in-and-outof the (111) plane, as well as, a change in length
of the weak FM vector (see video in Supplementary material
S1). This second peak therefore corresponds to the so-called
optic antiferromagnetic mode of Ref. [65] and to the high-
frequency gapped mode of Ref. [63]. Interestingly, we also
numerically found that this second peak (i) has a resonant fre-
quency that is insensitive to the effective masses associated
with the FE and AFD motions (in other words, the frequency
of this second magnetic peak is insensitive to a change of FE
or AFD resonances); and (ii) becomes a broad peak ranging
from 0 cm−1 to ≃ 16 cm−1 when switching off the coupling
parameters between magnetic moments with FE and AFD mo-
tions in our simulations (in that case, the corresponding mo-
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tions of the magnetic dipoles are not only in-and-out of the
(111) plane but also are within the (111) plane). As a result,
we can safely conclude that the abnormally large frequency of
the second peak results fromstatic(rather than dynamic) cou-
plings between themi’s and structural variables, with these
couplings generating a large magnetic anisotropy. Further-
more, this second peak has a resonant frequency of around
60 cm−1 rather than∼ 85 cm−1, if one “only” switches off
the static coupling between magnetic degrees of freedom and
AFD motions. In other words, AFD distortions (that have not
beenexplicitly incorporated in phenomenological models so
far to study dynamics of BFO systems) do significantly af-
fect the resonant frequency of this second peak. Analytical
expressions derived in the Supplementary material S2 from
energetic terms included in the effective Hamiltonian confirm
and even shed more light on such features, such as revealing
that the resonant frequency of this second magnetic peak also
depends on the values of the spontaneous polarization and an-
gle of oxygen octahedra tilting [69]. We thus hope that our
proposed atomistic MD method is, and will be, of large bene-
fits to gain a deeper knowledge of the fascinating multiferroic
materials [70]. Note that it can also open the door to many
exciting studies, such as the computation and understanding
of the cross-coupled electromagnetic susceptibility defined in
Ref. [65].
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Captions:
Figure 1: (Color online) Temperature dependency of the

magnitude of the antiferromagnetic vector within the pro-
posed MD scheme and for different damping coefficients,
when the fluctuation field is neglected (Panel (a)) and incor-
porated (Panel (b)). For comparison, the MC results are also
indicated by a red solid line.

Figure 2: (Color online) Complex electric (Panel (a)) and

magnetic (Panel (b)) susceptibilities as a function of frequency
in BFO at atT = 20K.

Figure 3: (Color online) Sketch of the FM vector (green)
and the L vector (red) at one instance. We note, at this in-
stance, these two vectors slightly deviate from the(111) plane
due to couplings with AFD and FE (see Supplementary infor-
mation S2). The (weak) FM vector is enhanced by ~59 times
to be seeable in this figure.
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