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A first-principles-based approach is developed to simudstemicalproperties, including complex permit-
tivity and permeability in the GHz-THz range, of multifeirs at finite temperatures. It includes both structural
degrees of freedom and magnetic moments as dynamic variablewtonian and Landau-Lifshitz-Gilbert
(LLG) equations within molecular dynamics, respectiveljth the couplingsbetween these variables being
incorporated. The use of a damping coefficient and of theuatin field in the LLG equations is required to
obtain equilibrated magnetic properties at any tempegafdo electromagnon is found in the spin-canted struc-
ture of of BiFeQ. On the other hand, two magnons with very different freqiesnare predicted via the use of
this method. The smallest-in-frequency magnon correspomascillations of the weak ferromagnetic vector
in the basal plane being perpendicular to the polarizatidiile the second magnon corresponds to magnetic
dipoles going in-and-out of this basal plane. The largeevaliithe frequency of this second magnon is caused
by staticcouplings between magnetic dipoles with electric dipoled axygen octahedra tiltings.

PACS numbers: 75.85.+t 31.15.xv 76.50.+g 75.30.Gw 76x60.J

Multiferroics form a promising class of materials exhibgi  ferroics, this hypothetical tool should also be able to cant
a rare coexistence between ferroelectricity and magnetisnfat the same time) the temperature associated with ionic mo-
They are experiencing a huge regain in interest, partly éer d tions and the temperature associated with magnetic degrees
signing novel advanced technologies (see, e.g., Refs.][1, f freedom. Such simultaneously control is not an easy task
and references therein). The development and usabef to accomplish. On the other hand, developing such code can
initio atomistic schemes recently had helped in gaining @e of large benefits. For instance, it may help in understand-
better knowledge of these complex materials. For instanceng what is the nature of the excitation, having a frequency
first-principles-based simulations explained why so femeo thatis larger than typical magnon frequencies but smadken t
pounds are multiferroics [3] and how their magnetic ordgrin phonon frequencies, that has been recently observed in BFO
can be controlled by the application of electric fields alongsystems (see Ref. [18] and Fig. 2 of Ref. [19] for the “mys-
specific directions [4—7]. They also provided a deep insighterious” excitation having a frequency of the order of 30-60
into the strain-driven phase transition towards statek git ~ cm™!). Can it be an electromagnon [20-22], as suggested in
ant axial ratio and large out-of-plane polarization in Bilke Ref. [18]?
(BFO) multiferroics [8-11]. Similarlyab-initio techniques  The purpose of this Letter is to demonstrate that it is possi-
revealed that a dramatic enhancement of magnetoelectric cle to develop such aab-initio scheme, and to apply it to the
efficients can be achieved near this latter phase transitiogtudy of BFO. It is found that LLG equations, in which a re-
[12, 13]. Another example is the prediction of array of fer- alistic damping coefficient is used and in which a fluctuation
roelectric (FE) vortices in BFO films [14] — that was then field is incorporated, coupled with classical Newtonianaqu
experimentally confirmed [15]. Interestingly, all theséida  tions allow to reach the equilibrium states of both the struc
breakthroughs from first principles concerrsdtic proper-  tural and magnetic variables at any temperature. The use of
ties of multiferroics. On the other hand, one particulatigle  this tool also yields the computation of the complex electri
lenging issue that remains to be tackled by atomistic method and magnetic susceptibilities for any frequency in the GHz-
in general, and by first-principles techniques, in particus  THz range. In particular, it predicts that the aforemergibn
the prediction ofdynamicalproperties of multiferroics at fi- mysterious excitation is in fact a magnon rather than an-elec
nite temperature. One particular reason behind such lack afomagnon, and that its large frequency originates froricsta
numerical tool is that ionic variables (e.g., polarizaten/or  (rather than dynamic) couplings between the magnetic égol
tilting of oxygen octahedra) obey Newton’s equations of mo-with electric dipoles and oxygen octahedra tilting.
tion while the spin degrees of freedom do not (such latter de- Here, we first take advantage of the first-principles-based
grees of freedom follow Landau-Lifshitz [16] or even more effective Hamiltonian developed for BFO systems [23, 24].

complicated equations such as Landau-Lifshitz-Gilber®).  ts total internal energyy, is written as a sum of two main
[17]). In order to realistically mimic dynamical propesief  tgrms:

multiferroics, one thus needs to develop a tool where dfier
equations are simultaneously obeyed, and that also inglude
the goupllng betwee|_’1 ionic and magnetic vane_lbles. Morl_?;ove Erot =Erearo({wi}, {0}, {wi})
and in order to predidinite-temperaturelynamics of multi-
+ Ewac ({mi}, {ui}, {n}, {wi}), €y



2

whereu; is the local soft mode in unit ced] which is directly X is the damping coefficient artg, is a fluctuation field that
proportional to the electrical dipole centered on that dejl} also acts on théth magnetic moment. As we will see be-
is the strain tensor, and contains both homogeneous and inhlmw, the introduction of this latter fluctuation field is ciat
mogeneous parts [25, 26]. The, pseudo-vector character- to obtain correct magnetic properties in a multiferroic it
izes the oxygen octahedra tilt, that is also termed theeamntif temperature, as consistent with previous studies done ga ma
rodistortive (AFD) motion, in unit cell [23]. m; isthe mag- netic systems [39, 40]. Technically, we use the Box-Muller
netic dipole moment centered on the Fe-sitand has a fixed method (that generates Gaussian distributed numbersdbr ea
magnitude of 4 [27]. Ere-arp iS given in Ref. [28] and in-  magnetic moment) to simulabé and to enforce the following
volves terms associated with ferroelectricity, strain afdD conditions to be obeyed by this fluctuation field at the finite
motions, and their mutual coupling&uac gathers magnetic temperature] [17, 39]:

degrees of freedom and their couplings, and is given in Refs.

[23, 24]. Note that the use of this effective Hamiltonian ap- (bf) =0, (3)
proach withinMonte-Carlo(MC) simulations was shown to ; ; \egT
(i) correctly yield theR3c ground state that exhibits a coexis- <bﬂ,a (t1) bf g (t2)> ZQW%,MS (t1 —t2), (4)

tence of a spontaneous polarization with antiphase oxygen o

tahedra tilt in BFO bulks [23]; (ii) provide accurate Neeban where« and 8 denote Cartesian coordinates andand ¢,
Curie temperatures, and intrinsic magnetoelectric coeffts  are two different times.() indicates an average over possi-
in BFO bulks and thin films [13, 23, 29]; and also (iii) repro- ble realizations of the fluctuating field [17], 5 is Kronecker
duces the spin-canted magnetic structure that is chaizetder delta function and (¢, — ¢,) is a Dirac delta function. A
by a weak magnetization superimposed on a large G-type agemi-implicit method devised by Mentirt al[41] is adopted
tiferromagnetic (AFM) vector in BFO films (Note that this here to (i) properly integrate the LLG equation, which is a
spin-canted structure originated from the AFD motionseath Stratonovich stochastic differential equation [17] (tteed to
than the polarization) [24]. Note, however, that the curren properly integrate LLG equation is a pivotal point that has
version of this effective Hamiltonian approach does noldyie been discussed in several studies [17, 41-45]); and (iipo e
a spin cycloid structure in BFO bulks, unlike in experimentsforce the conservation of the magnetic moments’ magnitude.
[20]. The probable reason for that is either the lack of an adThe Mentink algorithm is efficient by limiting the matrix in-
ditional energetic term that generates such cycloid ortti&at  version procedure — which is needed by an implicit integra-
period of the cycloid [20] is too large to be mimicked by atom- tor — for each magnetic moment at each time step. We have
istic simulations. The present results should thus be aelev checked that this algorithm indeed conserves the magnitude
to BFO thin films (for which no cycloid exists) [30, 31]. of the individual magnetic moments very well, and satisfies
Here, we decided to combine the effective Hamilto- our need for efficiency and stability. Simulations on a peido
nian scheme within an origindlolecular Dynamic§MD) 12 x 12 x 12 supercell (8,640 atoms) are performed within the
scheme, in order to be able to prediyinamicalproperties.  presently developed MD scheme to obtain finite-temperature
Technically, and as done in References [32, 33, 35], Newtoproperties of BFO. The system is first equilibrated at a cho-
nian equations are implemented for the; }, {n}, {w;} vari-  sen temperature and pressure (NPT ensemble), and then, de-
ables, with the corresponding forces appearing in thesa-equpending on the purpose of the simulation, we either continue
tions having been obtained by taking partial differentithe  having NPT steps to extract static properties, or adopt NVE
Ext energy of Eq. (1) with respect to each variable. As alsosteps to obtain time-resolved properties, such as autleerr
previously implemented [32, 33], the temperatures of theséion functions of electric or magnetic dipoles, to predigt d
lattice variables are controlled by Evans-Hoover ther@aisst namical properties. A time step of 0.5fs is used in all simula
[36]. The novelty here is to also include the dynamics of thetions.
magnetic moments on the same footing than the dynamics of One important problem to address when dealing with dy-
the structural variables at a given temperature (note te@®  namics of magnetic degrees of freedom and the LLG equation
not aware of any previous study addressing such simultaneois to determine theealistic value, or range of values, of the
“double” dynamics, and that controlling temperature fag th damping coefficient for a given system. One way to solve such
magnetic sublattice is a challenging problem [17, 37, 38)).  problem is to realize that MC and MD should give identical
that, we implemented the stochastic Landau-Lifshitz-&#b results forstatic properties at any temperature. As a result,

(LLG) equation [17] for them;’s degrees of freedom: MC can be used as a way of gauging MD simulations, and ex-
dm; ; ; tracting the proper damping constanf46]. We numerically
e X [Befr (t) + by (t)] found that, at any temperaturehas little effect on the spon-
A taneous polarization and oxygen octahedra tilting, tloeeef

™ {m; x [Ber (t) + b5 ()]}, yielding MD results being similar to the MC predictions for

) these structural properties for a wide range of dampindficoef

cients. In fact, the effect of can be clearly seen when inves-

whereB.; = —0FE/0m, is the effective magnetic field act- tigatingmagnetigoroperties in the multiferroic BFO — as con-
ing on theith magnetic momenty is the gyromagnetic ratio, sistent with the fact that “only” appears in the spin equations
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of motions. Consequently, Fig. 1 shows the temperature evak76 cm—!, 240cm~! and 263cm~!. They correspond to
lution of theL magnitude of the G-type AFM vector for differ- F, A;, E and A; symmetries, respectively [51] Not all the
ent) values within the MD scheme, as well as, the MC predic-modes appearing in measured Raman or infrared spectra
tion for such quantity. Moreover, parts (a) and (b) of this fig [19, 52-59] can be reproduced by our simulations because
ure display the results when the fluctuation field is negtécte of the limited number of degrees of freedom included in the
and accounted for, respectively, in the MD simulations,rin o effective Hamiltonian. In particular, the modes observed
der to also reveal the importance iff on finite-temperature around 74 and 81 cmt, and that are E(TO) and E(LO)
magnetism. One can see that, without the fluctuation fiéld, (imodes, respectively, according to Ref. [59], are missing in
MD simulations with\ > 1.0 x 10~ give an AFM vector that  our computations. Moreover, we numerically found that the
is significantly larger than that from the use of the MC tech-first two (lowest-in-frequency) peaks of Fig. 2(a) are mpostl
nigue for any temperature ranging between 10K and 800 Krelated to the sole FE degree of freedom incorporated in
and therefore also generates a larger Neel temperaturks whithe effective Hamiltonian scheme, while the last two peaks
(i) for damping coefficients smaller than0 x 10~ (includ-  have also a significant contribution from AFD distortions —
ing the case of = 0), the MD results are consistent with the as consistent with Ref. [60]. As revealed in Refs. [33, 34],
MC calculations for temperatures larger than 250 K but yieldbilinear couplings between the FE and AFD modes inkle
too small AFM vectors for lower temperatures [47]. There-phase allow the AFD mode to acquire some polarity, which
fore, not a single proper value allowing the MD simulations explains why these last two peaks emerge in the dielectric
of the AFM vector to match the MC results across all temper-spectra.
atures can be found without a fluctuation field. On the other Regarding the permeabilitfwo peaks can be seen in Fig.
hand, Fig. 1 (b) demonstrates that a wide range @famely,  2(b). Their predicted resonant frequenciesargcm* and
1.0 x 107 < A < 1.0 x 107") leads to a satisfactory agree- ~. 85cm~!, respectively [61] Since none of the frequencies
ment (i.e., a difference of less than 3%) between the MD andoincides with the dielectric resonant frequencies shawn i
MC results at any temperaturehen the fluctuation field is Fig. 2(a), we can safely conclude that they are not electro-
included Such results thus prove the crucial importance ofmagnons. They are rather “solely” magnons. Interestingly,
a fluctuation field for accurately modelling finite-temperat  we further numerically found that the lowest-in-frequency
spin dynamics in multiferroics. Note also that a large rangenagnon entirelydisappearsvhen we switch off in our sim-
of A can be adopted to obtain equilibrated static properties,lations the parameter responsible for the spin-cantea-str
which makes the MD approach suitable to model differenture of BFO. In other words, the purely AFM G-type structure
multiferroic/ferromagnetic bulks or nanostructures thvly  does not possess such magnon. Moreover, the video shown in
have very different damping constants due to different dampthe Supplementary material S1 demonstrates that this magno
ing mechanisms [48]. is associated with the rotation of magnetic dipdfesidethe

Let us now use the proposed MD scheme, incorporating the111) plane (that contains the polarization). In other wgord
fluctuation field and choosing = 1.0 x 107, to compute the  this magnon is the low-in-frequency excitation (possessin
complex electric and magnetic susceptibilities of BFO, €0 b gap) that has been predicted in Refs. [62, 63], and thatcorre
denoted byx. andx,,, respectively. Such quantities can be sponds to the oscillation of the weak ferromagnetic moment

calculated as follows [32, 49, 50]: about its equilibrium position in the basal plane [64]. Lst u
1 now try to understand the origin of the second magnetic peak,
[Xe (V)] ap :W [(da(t)ds(t)) + for which the frequency is much larger than those of typical

0o magnons (that are usually lower than 20Tbut is smaller
i27r1// dte®™ (d, (t) dg (O)>] , (5) than the phonon frequencies shown in Fig. 2a (this second
0 peak is thus consistent with the “mysterious” excitatiohs o
Xm (V)] ap :Vll;oT [(Ma(t)Mp(t)) + served in Refs. [18, 19]. This second magnetic peak is as-
B - sociated with fast oscillations of the magnetic dipolesngoi
z'27r1// dte®™ (M, (t) M (0»} ., (6) in-and-outof the (111) plane, as well as, a change in length
0 of the weak FM vector (see video in Supplementary material
wherev is the frequency while: andj3 define Cartesian com- S1). This second peak therefore corresponds to the saicalle
ponents — with ther, y and > axes being along the pseudo- optic antiferromagnetic mode of Ref. [65] and_ to the high-
cubic [100], [010] and [001] directions, respectiveld (t) freque_ncy gapped mode_ of Ref. [63]. In_terestlngly, we also
and M (t) are the electric and magnetic dipole moments affumerically found that this second peak (i) has a resonant fr
time ¢, respectively. Here, we focus on a fixed temperature oflUency that is insensitive to the effective masses assatiat

20K, for which the crystallographic equilibrium stateftge. ~ With the FE and AFD motions (in other words, the frequency
Figure 2 (a) shows the isotropic value of of this second magnetic peak is insensitive to a change of FE

the  [xe (V)] 5 dielectric  response, that is Or AFD resonances); and (ii) becomes a broad peak ranging
“ from 0 cnm ! to ~ 16 cnT ! when switching off the coupling

{[Xe ()]ae + Dxe ()] + Ixe (”)]zz} /3. Four peaks can  parameters between magnetic moments with FE and AFD mo-

be distinguished, having resonant frequencieddfcm—',  tions in our simulations (in that case, the corresponding mo
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Captions: magnetic (Panel (b)) susceptibilities as a function offietpy
Figure 1: (Color online) Temperature dependency of theén BFO at atl” = 20 K.

magnitude of the antiferromagnetic vector within the pro- Figure 3: (Color online) Sketch of the FM vector (green)

posed MD scheme and for different damping coefficientsand the L vector (red) at one instance. We note, at this in-

when the fluctuation field is neglected (Panel (a)) and incorstance, these two vectors slightly deviate from(thiel ) plane

porated (Panel (b)). For comparison, the MC results are alsdue to couplings with AFD and FE (see Supplementary infor-

indicated by a red solid line. mation S2). The (weak) FM vector is enhanced by ~59 times
Figure 2: (Color online) Complex electric (Panel (a)) andto be seeable in this figure.
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