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Dynamical Particle Hole Asymmetry in Cuprate Superconductors
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Motivated by the form of recent theoretical results, a quantitative test for an important dynamical
particle hole asymmetry of the electron spectral function at low energies and long wavelengths
is proposed. The test requires the decomposition of the angle resolved photo emission intensity,
after a specific Fermi symmetrization, into odd and even parts to obtain their ratio R. A large
magnitude R is implied in recent theoretical fits at optimal doping around the chemical potential,
and I propose that this large asymmetry needs to be checked more directly and thoroughly. This
processing requires a slightly higher precision determination of the Fermi momentum relative to
current availability.

1. Introduction: The search for a microscopic the-
ory of the normal state of the cuprates is one of the
main themes in condensed matter physics for the last
two decades. The recent suggestions of describing the
normal state in terms of theories with a quantum critical
point [1] have also created wide interest in other branches
of physics such as string theory and quantum gravity [2].
An initial theoretical objective is the derivation of the
normal state low energy long wavelength single electron
spectral function ρG(~k, ω) (or equivalently A(~k, ω)), en-
coding the complete set of symmetries.

In this paper I discuss the behavior of ρG(~k, ω) under
a dynamical particle hole transformation simultaneously
inverting the wave vector and energy relative to the chem-
ical potential µ as:

(
~̂
k, ω)→ −(

~̂
k, ω), with

~̂
k = ~k − ~kF . (1)

Invariance under this transformation has often been
invoked in analyzing Angle Resolved Photoemission
(ARPES) data[3]. It is an emergent symmetry of the
Fermi liquid in the sense of Ref. (4), arising when correc-
tion terms of O(ω/εF )3 are neglected[5]. Fermi liquids
without disorder at intermediate coupling are invariant
[6] under Eq. (1), as are most other contemporary theo-
ries of cuprates that I am aware of.

On the other hand two recent theories, the extremely
correlated Fermi liquid theory (ECFL) proposed by the
author Ref. (7), and the hidden Fermi liquid theory due
to Casey and Anderson (CA) Ref. (8), yield a spectral
function that lacks invariance under Eq. (1). In Ref. (9)
a comparison between the ECFL spectral function and
a large set of data at optimal doping shows excellent
agreement and provide a useful parametrization of the
data. To quantify the asymmetry: for optimally doped
cuprates, in an energy range of ±25meV around µ, the
theories and the fits of Ref. (9) (extrapolated to lower
ω) yield an asymmetry ratio R (defined below Eq. (3))
between ∼ 7% to 10%. Since a large asymmetry makes a
decisive ruling on the allowed theories, we propose the di-
rect experimental measurement of this effect and indicate
a procedure for the same.

I first discuss a Fermi symmetrization procedure quite

distinct from the symmetrization in [3, 10]. I construct

an object SG(~k, ω) (Eq. (2)) from the observed ARPES
intensity and find expressions for this in the Fermi liquid
and the ECFL model. I further show how the momen-
tum dependence of the dipole transition probability and
the Fermi liquid parameter Zk can be absorbed into the
constants.

The SG(~k, ω) function is detailed for a simplified ver-
sion of ECFL, providing an idealized picture of the pre-
dicted asymmetry effect in cuprates. I further discuss a
related asymmetry of the tunneling conductance in the
normal state, and also the expected angle integrated spec-
trum. Within the simplified ECFL model, where the
quasiparticle peaks are sharp over a large fraction of the
zone, these exhibit unusual and possibly measurable fea-
tures.
2. Fermi symmetrization Our first goal is to formu-

late a procedure for isolating terms in the spectral func-
tion near the Fermi energy that are linear in wave vector

and frequency ∼ ξk − ω (with ξk =
~̂
k.~v~kF ) found in the

recent work Ref. (7). The ARPES intensity is given in
terms of the spectral function within the sudden approx-
imation by the expression I(~k, ω) = M(~k) fω ρG(~k, ω),

where M(~k) is the dipole transition probability which is

expected to be a smooth function of ~k and independent
of ω. It also contains the Fermi function for occupied
states fω = {1 + exp (βω)}−1, a non symmetric function
of ω. Therefore we first formulate a Fermi symmetrized
object:

SG(~k, ω) ≡ fωfωρG(~k, ω) =
1

M(~k)
fωI(~k, ω), (2)

where fω = 1 − fω = f−ω. We may now de-

compose SG(~k, ω) under Eq. (1) into its antisymmetric

Sa−sG (~kF |~̂k, ω) and symmetric SsG(~kF |~̂k, ω) combinations

respectively 1
2

[
SG(~kF +

~̂
k, ω)∓ SG(~kF − ~̂k,−ω)

]
. We

will also define the important asymmetry ratio:

RG(~kF |~̂k, ω) = Sa−sG (~kF |~̂k, ω)/SsG(~kF |~̂k, ω), (3)

where normalization factors cancel out, giving a dimen-
sionless function of order unity. Its magnitude can there-
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fore be compared across different systems. We will quote
RG and SsG below for various theoretical models; Sa−sG
can be reconstructed from Eq. (3).

3. Dynamical particle hole symmetry of the
Fermi Liquid theory. We begin by considering SG
for the Fermi liquid theory. The spectral function of
a Fermi liquid ρFLG (~k, ω) is given in terms of a smooth
background plus a quasiparticle peak as in Eq. (4). Near
the Fermi surface we can linearize various objects in
k̂ and ω. With ~v~kF the Fermi velocity vector at ~kF ,
the quasiparticle piece is specified by three parameters
(i) renormalization factor Z~k, with a linear dependence

Z~k = Z~kF [1 + c1(
~̂
k.~v~kF )], (ii) the quasiparticle energy E~k

vanishing linearly at the Fermi surface E~k = m
m∗ (

~̂
k.~v~kF )

with an effective mass renormalization m
m∗ and (iii) the

line width γ~k ∝ [E2
~k

+ (πkBT )2] vanishes symmetrically
at the Fermi surface. Thus near the Fermi surface:

ρFLG (~k, ω) ∼ ρ(bg)
G (~k, ω) +

Z~k
π

γ~k
γ2
~k

+ (ω − E~k)2
. (4)

For ~k close to the Fermi surface, the background part
is neglected compared to the large quasiparticle part.
Defining the quasiparticle peak part

Q(
~̂
k, ω) =

Z~kF
4π cosh2(βω/2)

γ~kF

γ2
~kF

+ (ω − m
m∗ (

~̂
k.~v~kF ))2

,

(5)

we write the Fermi symmetrized functions of (
~̂
k, ω) :

{SsGFL
,RGFL

} = {Q(
~̂
k, ω), c1(

~̂
k.~v~kF )}, (6)

where we retained only terms linear in k̂, ω beyond the

quasiparticle peak term Q(
~̂
k, ω). Observe that to O(ω2)

the asymmetry ratio R is independent of ω. The require-
ment of neglecting the background is necessary, since it
is hard to make a general statement about the (k, ω)
dependence of the background part. Therefore the dis-
cussion becomes sharp only in situations where the peak
term overwhelms the background part- thus forcing us to
low temperatures. The same issue also impacts the syn-
chrotron data adversely compared to the laser ARPES
data, if we interpret the former to have more substantial
elastic scattering correction as argued in Ref. (9).

We make a few remarks next. (1) The coefficient c1
vanishes in theories where the self energy is ω dependent
but ~k independent. To the extent that we can experi-
mentally identify a ω independent but k dependent term
as in Eq. (6), one can say that the Fermi liquid spec-
trum possesses the dynamical particle hole invariance.
(2) The momentum dependence of the dipole transi-

tion probability M(~k), if any, can be absorbed into c1
in Eq. (6) by Taylor expansion. This implies that the
expression Eq. (6) is valid for the S,R constructed from

the ARPES intensities directly (i.e. omitting the 1/M
term in Eq. (2)). The important asymmetry ratio R gets
rid of the overall scale factors. Therefore its magnitude
is a meaningful quantitative measure of the asymmetry.
(3) It follows that the frequency independence of R is
also true for any theory where the Dyson self energy
=m Σ(k, ω) is even (i.e. not necessarily quadratic) in
ω, such as the marginal Fermi liquid [11] and also vari-
ous refinements of the RPA. Subleading corrections of the
type ω × T 2 or ω3 in =m Σ(k, ω) [5], as well as intrinsic
particle hole asymmetric density of states terms can lead
to a non trivial R . However these are estimated [5, 6]
to be an order of magnitude smaller than the predicted
asymmetry of the theories discussed next.
4. The asymmetry ratio in ECFL: In the re-

cent work on the ECFL[7] ρG(~k, ω), is the product of a

Fermi liquid spectral function ρg(~k, ω) and a caparison

factor
({

1− n
2

}
+ ξk−ω

∆(~k,ω)
+ η(~k, ω)

)
, explicitly contain-

ing a linear dependence on the energy ω. This important
term redistributes the dynamical spectral weight within
the lower Hubbard band, in such a way as to preserve the
Fermi volume. In a further approximation of the for-
malism, a simplified ECFL theory emerges where we ob-
tain explicit analytical results. In this version η(~k, ω) is
negligible and the coefficient ∆ is a constant determined
by the number sum rule. In Ref. (9, 12), the simplified
ECFL was tested against data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ. The test spans a substantial range
of occupied energies ∼ 1 eV, with quantitative fits in
the 0.25 eV energy range. The remarkably close agree-
ment between data and theory over the broad range of
data sets appears to vindicate the form of the spectral
function. The test proposed in this work is somewhat
complementary, it is over a smaller energy range ∼ 2kBT ,
probing the asymptotic low energy region centered around
the Fermi energy.

With the assumption of a smooth k dependence of
η(~k, 0) and ∆(~k, 0) in the expression for the spectral func-
tion [13] and p = d0 + (1− n

2 ), we obtain

SGECFL
∼ Q× [p+ d1

~̂
k.~v~kF + d2 ω +

(
~̂
k.~v~kF − ω)

∆(~kF )
].

Here the term d0 arises from Taylor expanding η(~kF , 0)
and also the shift of the chemical potential from the free
value, d1 from the momentum dependence of Zk and
this term can also absorb the momentum dependence of
M(k), and d2 from the frequency dependence of η(k, ω).
We can thus compute the symmetric and anti-symmetric
parts {SsGECFL

,RGECFL
} as:

∼ {p Q, d1

p
~̂
k.~v~kF +

d2

p
ω +

(
~̂
k.~v~kF − ω)

p ∆(~kF )
}. (7)

The asymmetry ratio R therefore has a linear ω and k̂
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FIG. 1: Top inset shows the large predicted asymmetry
Ra−s
GSECFL

versus ξ in the small energy range of 150 meV. Sim-
ilar magnitudes are found as functions of ω at various ξ. The
figure shows Sa−s

GSECFL
from Eq. (9). versus ξ (main) ω (inset)

in eV at various ω (main) ξ (inset). Arrows indicate the di-
rection of increasing energies. We used n = 0.85, η = .05 eV,
∆0 = .0796 eV here.

dependence. Using the frequency dependence as the sig-
nature, one should be able to distinguish between the
results of Eq. (7) and Eq. (6) .

The simplified ECFL model (SECFL) is described in
detail in Ref. (12), where we write the spectral function

near the Fermi energy ρPeakGSECFL
(~kF +

~̂
k, ω) as:

1

π

Z2
k Γk

Z2
k Γ2

k + (ω − EFLk )2

n2

4∆0
{ε0 + ξk − ω} . (8)

where ε0 = ∆0
4
n2 (1− n

2 ). Here EFLk = Zk ξk, in view of
the form of the self energy Φ. To leading order, we can

set Zk → ZF independent of k, and ξk =
~̂
k.~v~kF , EFLk =

ZF
~̂
k.~v~kF , and set Γk = η + πCΦ[(πkBT )2 + (EFLk )2],

where η is the elastic broadening introduced in Ref. (9)

(distinct from η(~k, ω)). For the model Eq. (8), we can
set Γk → ΓkF and thus obtain the leading behavior near
the Fermi energy of {SsGSECFL

,RGSECFL
} as:

∼ [(1− n

2
)Q(

~̂
k, ω),

{~̂k.~v~kF − ω}
ε0

], (9)

where Q(
~̂
k, ω) is obtained from Eq. (5) by replacing

m/m∗ → ZF and γk → ΓkZk. Note that e.g. at
~̂
k = 0

and any convenient ω0, |R(0, ω0)| = ω0/ε0, and thus its
magnitude yields the important energy scale ∆0. We em-
phasize that Eq. (7) is more generally true within the
ECFL approach. We display Sa−s in the Fig. (1) for a
model calculation based in the simplified ECFL model
with a flat density of states Ref. (12) Sec.(IV.F). The
values of the basic parameters in all figures are as fol-
lows: T = 180K, ωc = .25 eV, CΦ = 1(eV)−1. Notice
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FIG. 2: (I) the predicted AIP spectrum showing a shallow
minimum at ω ∼ −.2 eV, and a rise as the binding energy
|ω| increases. The rise is greater as the particle density n in-
creases (orange to red). Inset (II) reveals the role of elastic
scattering width η (black to red). Inset (III) shows the local
DOS relevant to the tunneling conductance, for the same pa-
rameters as in (II) with a remarkable rising piece near zero
bias.

the distinctive increasing linear behavior with
~̂
k and a

decreasing linear one with ω, as in Eq. (7) and Eq. (9).
5. Single particle tunneling into the extremely

correlated state: In the simplest model of tunneling in
the t-J model, the conductance is given in terms of the

local density of states (DOS) ρ
(local)
G (ω) =

∑
~k ρG(~k;ω).

Its convolution with fω and fω gives half the occupied
n
2 , and the unoccupied (1 − n) densities, thus provid-
ing useful sum-rules for tunneling[14]. The sum rule im-
ply asymmetry between adding particles and holes and
thus a downward sloping conductance[15, 16]. Recent
experiments in the overdoped regime[17, 18] display the
same asymmetry, providing strong confirmation that t-
J model type extreme correlations are operative at high
hole doping levels as well, and not just near half filling.
More detailed information on the frequency dependence
is clearly of experimental interest. We note that the an-
gle integrated photo emission (AIP) technique obtains
the local DOS ×fω, and provides a complementary view
to tunneling. Fig. (2) presents the results from the sim-
plified ECFL model for both the (local) DOS and DOS
×fω at various densities and elastic scattering parameter
η. It shows an overall decrease of the local density of
states with energy. Interestingly the tunneling curve in
the inset (III) shows an upturn followed by a rising piece
near ω ∼ 0, and the AIP curve shows a related shallow
minimum at ω ∼ −.2 eV.

To understand the unusual result, consider integrating
the spectral function in Eq. (8) over ξk. As discussed
in Ref. (9, 12), when the energy is less than ∼ 1eV,
the quasiparticles become sharp and this integral can be
estimated by replacing the Fermi liquid Lorentzian by
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δ(
~̂
k.~v~kF −

m∗

m ω). This yields the quasi particle peak con-
tribution:

lim
ω≤ε0

ρ
(local)
G,Peak(ω) ∼ (const)

{
ε0 + (

m∗

m
− 1)× ω

}
. (10)

Since m ≤ m∗, it follows that the slope is positive and
hence the rising conductance! In the general version of
ECFL, different parts of the Fermi surface contribute ac-
cording to the weight of 1/∆(~kF ). We expect the result-
ing average to be less favorable to a rising term than in
the simplified ECFL model.

6. Other theories: Casey and Anderson
Ref. (8)(CA) provide a spectral function that may be
Taylor expanded at finite T and low enough energies as
follows. With q = 1 − 1

4n
2 depending on the filling n,

and Γk̂ = A(kBT ) + Cv2
kF
k̂2, their expressions yield:

{SsCA,Ra−sCA } = {Q′, cot(qπ/2)
(vF k̂ − ω)

Γ0
}. (11)

with Q′ = const × sin(qπ/2)
4π cosh2(βω/2)

/
[
Γ2

0 + (ω − vF k̂)2
]q/2

.

Therefore this work also implies a non trivial R with a
linear ω, k̂ dependence, similar in form to that in ECFL,
although with a non Lorentzian peak factor replacing the
Q factor in Eq. (7). It is seen that the asymmetry of
this theory as well as that of the ECFL theory vanishes
continuously at low particle density n → 0. An impor-
tant characteristic energy ∆∗(x, T ), say the inverse of the
slope of the linear in ω term in R contains much physics.
In the CA theory ∆∗(x, T ) ∝ Γ0 vanishes at all densities
x as T → 0, thereby defining a line of quantum criti-
cal points. On the other hand in the ECFL calculations,
the energy ∆∗(x, T → 0) is non zero but much smaller
than the (bare) Fermi energy. However it could vanish
at a specific filling xc: as ∆∗(xc, T → 0) → 0, thereby
locating an isolated quantum critical point.

Other contemporary theories have a different predic-
tion from the ECFL and CA. The popular marginal
Fermi liquid model[11] for the spectral function has a
Dyson self energy that is symmetric under the transfor-
mation Eq. (1). Therefore it leads to an ω independent
asymmetry ratio at small energies, as in the usual Fermi
liquid[6]. A similar ω independent R occurs for the RPA
and its many variants emphasizing fluctuation contribu-
tions.

7. Conclusions The program of extraction of the
asymmetry ratio from the “ideal” spectral weight is sum-
marized in Fig. (3). A window of size ∼ 2kBT in ω and

vF k̂ is highlighted in this construction. It is proposed
that a careful examination of the ARPES intensity along
these lines would determine the existence of dynamical
particle hole asymmetry. This asymmetry also relates
to the difference in velocities (and amplitudes) of quasi
particles and quasi holes, of the type that are invoked in
explaining the peculiar sign of the Hall effect in the mixed
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FIG. 3: Symmetry extraction illustrated for the simplified
ECFL model. Here n = 0.85, η = .05 and ∆0 = .0796 with
ω (ordinate) and ξ (abscissa) in eV. (A) shows the spectral
function ρG , (B) ρGfω, (C) ρGfωfω (D) the symmetrized ob-
ject Ss

G (E) the antisymmetrized object Sa−s
G showing a peak

and a trough, and (F) the asymmetry ratio RG from Eq. (3).

state[19]. We thus expect it to be important in Hall and
analogous transport contexts such as thermopower. This
search is complementary, as well as a pre-requisite, to
the detailed characterization of the symmetric part Ss.
Specifically I propose that the search for a non trivial
(i.e. ω linear) asymmetry ratio R is important for iden-
tifying the correct underlying theoretical description of
the cuprates.

In order to implement the transformation Eq. (1) on
the experimental data, we need a high resolution in fre-
quency as well as momentum. Since the bare Fermi veloc-
ities are high ~vF ∼ 5 eV Å, the momentum resolution
becomes critical. An error ∆ξ ∼ 15− 20 meV can lead
to quite incorrect conclusions. Thus in order to draw un-
ambiguous conclusions we require ∆k ∼ .001(Å)−1, i.e.
∆ξ ∼ 5 meV or better, thereby posing an interesting
challenge to the experimental ARPES community.
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