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Following a short discussion of the granular model for an inhomogeneous superconductor, we
review the Uemura and Homes correlations [1–4] and show how both follow in two limits of a
simple granular superconductor model [5–8]. Definite expressions are given for the almost universal
coefficients appearing in these relationships in terms of known constants.
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Introduction.—The model of a granular superconduc-
tor, in which superconducting grains are coupled via
Josephson tunneling, is considered. This model is a very
useful paradigm both in its own right and because it is
applicable to a number of real situations. These range
from man-made Josephson arrays to a variety of inho-
mogeneous superconductors. Without insisting on the
relevance to high-Tc superconductors, one may note that
the ubiquitous phenomenon of the “pseudogap” in such
materials [9] finds a very natural qualitative explanation
in this model. This explanation is very clear in the high
intergrain resistance case (see part A below). The real
transition is the phase-locking of the grains, while around
the (higher) Tc of the grain material, each grain develops
(continuously in temperature) a fluctuating order param-
eter which leads to a smaller density of states near the
Fermi level. Thus, the formation of the pseudogap in
this model is just a crossover, whose width is determined
by, and decreasing with, the grain size. These grains
are evidently due to regions in the system whose effec-
tive Tc is higher due to fluctuations in the doping level.
The sensitivity of Tc to the doping level, compared with
the appropriate interface energy, will determine whether,
effectively, grains will form (described later in the discus-
sion). The case of a d-wave superconductor, where Tc is
sensitive to disorder, is immediately highlighted.

In this Letter we consider the question of the uni-
versal correlations reported experimentally between the
low-temperature superfluid density, ns and the transition
temperature Tc (Refs. 1–4). Three such correlations have
been reported for high-Tc superconductors [10, 11], and in
some cases for usual “low-Tc” ones. Two of them are dif-
ferent from each other, while the third may be related to
the second; these will be examined shortly. It is of great
interest to understand the physics behind such correla-
tions [12, 13] and what are their respective ranges of va-
lidity [14–16]. We show that both these clearly different
correlations follow from two limits of a simple classical
granular superconductor model [5–8] and derive the co-
efficients in terms of natural constants and the gap-to-Tc

ratio for the underlying grain material. Our derivation is
embarrassingly simple. The Uemura/Homes law follows

when the critical temperature for the intergrain phase
locking is much smaller/comparable to that for the grain
material. The strongly inhomogeneous, granular, picture
is a broadly applicable paradigm [17], describing many
diverse systems [7, 18, 19]. Recently, there is strong ev-
idence for the relevance of this paradigm also for high
temperature superconductors [20].
In 1988, Uemura et al. [1] reported, for underdoped

high-Tc superconductors, the proportionality of ns/m
∗

(or λ−2, where λ is the penetration length and m∗ the
effective carrier mass, which is of the order of 5m for
most of the considered materials, where m is the electron
mass) to Tc. Here ns was determined from the muon
spin relaxation rate for four high Tc families with varying
doping level (carrier density). The coefficient in the linear
relationship is such that a carrier density of ns = 2 ×

1021 cm−3 corresponds to Tc ≃ 25 K.

In 2004, Homes et al. [2] reported a different correla-
tion, valid more generally, including the overdoped and
optimally doped cases: ρs0 ≃ 120 σdcTc, where ρs0 is the
strength of the condensate determined by optical mea-
surements, and σdc is the normal-state dc conductivity
near Tc. The superfluid density is related to the super-
conducting plasma frequency ρs0 ≡ ω2

ps ∝ ns/m
∗ as well

as the penetration depth, ρs0 = c2/λ2
0. Nine different

high-Tc material families with varying doping (includ-
ing optimal and beyond) were examined, as well as the
phonon-mediated superconductors Pb and Nb, shown in
Fig. 1. This result has been interpreted [3] in terms of the
conventional decrease of ns proportional to ℓ/ξ0 ∝ Tcτ in
the dirty limit of BCS superconductors, where τ and ℓ are
the mean-free time and scattering length and ξ0 the zero-
temperature BCS coherence length (ξ0 ∝ vF /Tc). The
questions of why these materials are in the dirty limit,
when Tc is so high and the coherence length so small, and
to what extent can the BCS-type relationships be used
for high Tc materials (in spite of current theoretical be-
liefs) were left open. Clearly, the d-wave nature of these
superconductors might play an important role here.
Finally, in 2005 Zuev et al. [4] reported a linear rela-

tionship between ns and T χ
c , where χ = 2.3± 0.4. They

pointed out that with the empirical proportionality of Tc
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FIG. 1. A log-log plot of the superfluid density ρs0 vs σdc Tc

in the a-b planes for a variety of electron and hole-doped
cuprates. The dashed line corresponds to the general result
for the cuprates ρs0 ≃ 120 σdcTc. The points for Nb and Pb,
indicated by their atomic symbols, also fall close to this line.

to σdc (theoretically justified in a large parameter regime
for a classical Josephson-coupled superconductor [6], see
below); a value of χ = 2 is within the experimentally-
determined range and would make their result consistent
with the one by Homes et al. [2].
These quite universal correlations have caused consid-

erable discussion [12]. For a recent explanation, we men-
tion the one relying on the vortex glass melting temper-
ature [13].
Method.—We shall now demonstrate that the various

ns ∝ Tc relations follow in an almost trivial manner for
a classical (no capacitive energies) ordered Josephson ar-
ray [7]. We take the simplest model of a two-dimensional
(2D) array of square L×L grains of thickness d in the x–y
plane, made from a superconductor with a critical tem-
perature T 0

c . The grains are connected by flat Joseph-
son junctions with Josephson current amplitudes IJ and
Josephson energies EJ = ~IJ/2e. The 2D array can be
regarded as the whole system or as one of the layers in
a 3D structure. From now on we mainly consider “large
grains” in the Anderson sense [21]. There, the intragrain
gap is much larger than the single-particle level spacing,
wL, of the isolated grain. In such “large” grains, bulk su-
perconductivity is approximately valid. The Josephson
coupling can be written as [22]

EJ = (π/4)gn∆, (1)

where gn is the intergrain conductance measured in units
of e2/~. We assume, for definiteness, that the size, L, of
each superconducting unit is ≪ λ0, where λ0 is the pene-
tration depth of the grain material. (It is straightforward
to get the result for L ≫ λ0, as well). This immediately

implies that L is much smaller than the effective pen-
etration depth for the array, i.e. all induced fields are
neglected. This can be taken as a model for a granular
superconductor as long as the effects of the capacitances
and the intergrain disorder, which certainly exist in real
cases, are not dominant [23].
We now obtain the linear response to a small magnetic

field Bz perpendicular to the array. For λ0 ≫ L the field
Bz is uniform over each grain. ~B is derived from a vector
potential ~A = (Bzy, 0, 0). Note that ∇· ~A = 0 as required
for the London gauge. Thus the London equation takes
the form

js = −
nse

2

m∗c
A. (2)

The flux enclosed in an L× y rectangle shared equally
by two neighboring grains is BzLy. Due to it, the phase
difference between two superconducting blocks that are
nearest neighbors in the x direction, increases with y in
the manner

φ(y) ≃ −2eBzyL/~c = −2eLAx(y)/~c. (3)

For small B, this leads to a Josephson current density
[22]

js,x(y) = −2eIJAx(y)/~cd. (4)

Equating this Josephson current to the screening current
in the London equation [Eq. (2)], we find the general rela-
tion for a granular superconductor with L ≪ λ0 is similar
in form to the result for an array of superconducting weak
links [24]

ns =
4m∗

d~2
EJ . (5)

This relation can be written in terms of Tc and the
normal-state conductivity. Different results are obtained
in the two following cases.
A. Large intergrain resistance gn ≪ 1.— Because the

electrons are well localized in the grains, one expects the
normal state of this system to be insulating when extrap-
olated to T → 0 [7]. Here, to reach EJ ∼ T , one needs
to go to temperatures much lower than T 0

c [see Eq. (1)].
At those temperatures EJ saturates with values of order
gn∆(0), and Tc is given by a constant ζ of order unity
times EJ , Tc = ζEJ . We have used units in which kB = 1
throughout. Thus, in this case we obtain

ns =
4m∗

d~2ζ
Tc, (6)

which is just the Uemura correlation. For m∗ = 5m, ζ =
1, d = 5 Å and ns = 2× 1021 cm−3 we obtain Tc ≈ 35 K.
Thus, the coefficient in Eq. (5) agrees within a factor
of two with the Uemura one, for reasonable parameters
of the 2D layer. Eq. (5) is just the relation between
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ns and the order-parameter phase stiffness for the XY
model. In this limit, there exist two distinct effects, the
buildup of the pairing correlations in the grains, which
is a continuous crossover around T 0

c , and the intergrain
phase locking at Tc. Were this picture applicable to the
underdoped high-Tc case, T

0
c and Tc would correspond to

the establishment of the pseudogap and that of overall
superconductivity respectively.
When the Uemura correlation was first reported, the

proportionality of Tc to the electron density was taken to
indicate the purely electronic origin of high-Tc supercon-
ductivity. Our simple derivation above proves that that
logic is not infallible. The Josephson array can model any
appropriately inhomogeneous superconductor, including
ordinary low-Tc ones, and it does yield the Uemura cor-
relation.
B. Small intergrain resistance gn & 1, (including

gn ≫ 1).— Here EJ becomes comparable to T around
T 0
c , which is then approximately equal to Tc. In the high

Tc case, this would mean that the pseudogap and the
superconductivity are established at the same tempera-
ture, which is the case for the optimally doped and over-
doped situations. Here we obtain, defining the constant
A (∼= 1.75 in the BCS case) via the usual relationship in
the grain material, ∆(0) = AT 0

c :

ns =
Aπgnm

∗

d~2
Tc =

Aπσ′
nm

∗

~2
Tc, (7)

which is equivalent to the Homes’ law! Here σ′
n is the

normal state conductivity just above Tc, in units of
(e2/~)/cm. It makes sense that the condition gn & 1 is in
fact satisfied for high enough doping. While the square
of the superconducting plasma frequency is defined as
ω2
ps = nse

2/(πm∗) in units s−2, the quantity that Homes
et al. examines is (ωps/c)

2 in units of cm−2; this allows us
to cast the Homes’ law in the following seemingly elegant
way. Using the “universal” constant α′ ≡ Aα ≃ 0.0128,
where α ≡ e2/(~c) is the fine structure constant and we
have previously taken A = 1.75:

(ωps/c)
2 = πα′σ′

nTc/(~c). (8)

The approximate coefficient in the proportionality of the
LHS to σ′

nTc depends only on the gap-to-Tc ratio and on
natural constants. We note that this result agrees exactly
with the usual “dirty limit”, in which the reduction of ns

is: ns = n (vFτ/ξ0). Using the BCS-type relationship
ξ0 = ~vF/[π∆(0)] yields Eq. (8). Since the dirty-limit
value agrees approximately with the Homes’ law coeffi-
cient [2, 3], so should our result [Eq. (8)].
In fact, since e2/~ ≃ 1/4100 Ω−1, σ′

n ⋍ 4100 σn, when
σn is measured in Ω−1cm−1. This yields

(ωps/c)
2 ⋍ 50 σnTc/(~c) ⋍ 235 σnTc. (9)

In the last expression on the RHS σn and Tc are in
the same units as in the original Homes law paper [2]

(namely Ω−1cm−1 and K) [25]. The slope in Eq. (9) is
larger by about a factor of two from the value 120 ± 25
reported in Ref. 2. Note that this expression can be
recast as Tc ∝ ρs0ρdc, where ρdc = 1/σn, allowing a
more direct comparison with the Uemura relation. For
the low-Tc cases, the agreement is within about 50 per-
cent. Taking, as an example, the first Nb sample of Ta-
ble I of Ref. 3, we get from the values of σn and Tc,
(ωps/c)

2 ∼ 4.7×108 cm−2, while the value in the table is
∼ 3.1× 108 cm−2. Overall, the agreement of our Eq. (9)
with experiment is within a factor of two. With the gross
simplifications introduced in our näıve model, we regard
this as satisfactory.

Discussion.— Nominally, the high Tc superconductors
look like they are in the clean limit. This is believed
rather generally and is consistent with the values re-
ported in Refs. 2, 3. This is not because they are so
clean; the experimental values of kF ℓ can be of order
50− 100. The problem is that ξ0 is small due to the rel-
atively large ratio Tc/EF (here kF ξ0 ∼ 10 − 50). Thus,
these materials would be in the clean limit if they were
homogenous. However, the natural fluctuations in the
doping make them inhomogeneous, and ξ0 is not large
enough to average that. What is shown above is that
this inhomogeneous system behaves like a dirty one. (Al-
though, again, it would not be, were it homogenous!)
How the inhomogeneity arises has been discussed by Al-
varez and Dagotto [17] and more recently by Hoffman
[26]; we elaborate on this in Ref. 7 following the gen-
eral argument by Ma and one of us [27]. The issue at
hand is to find the size scale where the gain in energy,
∝ Ld/2 due to fluctuations in the defect concentration or
doping is larger than the energy of the interface created,
∝ Ld−2. When this scale of L is smaller than the effec-
tive correlation length, the instability and formation of
grains will occur. Clearly, a stronger sensitivity of Tc to
the defect concentration will help in the establishment
of the granular state of matter. As mentioned before, a
d-wave character of the superconductor is very helpful in
that respect.

The behavior of the granular model presented is de-
termined by two conditions, governed by dimensionless
ratios: whether the grains are large or small [depend-
ing on the ratio ∆(0)/wL] and whether the intergrain
resistance (in units of ~/e2) is larger or smaller than
unity. The Uemura correlation is valid only for the
large grain, large resistance case which typically corre-
sponds to the underdoped region of the phase diagram
for the cuprates where a pseudogap is usually observed
[9]; ∆(0)/wL & 1, gn ≪ 1, where the insulator and the
inhomogeneous Josephson phase are the relevant phases.
In the large grain, small resistance case (which corre-
sponds to the optimally or overdoped cuprates where
the pseudogap is either strongly diminished or absent al-
together), ∆(0)/wL & 1, gn ≫ 1, we showed that the
Homes’ law is the relevant correlation. In the small
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grain case ∆(0)/wL < 1 and small resistance metallic
regime gn & 1 (the optimal and overdoped regime), su-
perconductivity is established in an almost homogenous,
strongly disordered, conductor. Even close to the metal-
insulator transition the mean free path ℓ is of a small
microscopic size and it makes sense that the supercon-
ductor should be in the dirty limit (ℓ ≪ ξ0). This im-
plies that the Homes’ law [2, 3] (or the one reported by
Zuev et al. [4]) should then yield the valid correlation
between ns and Tc. The small grain case ∆(0)/wL . 1
with large intergrain resistance gn . 1 (and therefore an
insulating normal state) is very interesting since strong
intragrain superconducting correlations do exist [28], but
it is not known exactly what is the effect of the intergrain
coupling with the Coulomb blockade [23].

We have neglected throughout the capacitive,
Coulomb-blockade-type interactions [23]. This is justi-
fied in all the metallic regimes, due to screening. This
includes all the range of the Homes correlations. The
capacitive effects might also play an important role in
the large-grain-small-intergrain-coupling case, where
the Uemura correlations are supposed to hold. Our
treatment there is valid only for grains large enough for
the capacitive effects not to be important.
Only compact regular grains were considered in this

paper. More general inhomogeneities (e.g. stripes [11],
layers or more complex geometries) should be treated as
well. The case of high Tc materials is further compli-
cated due to the anisotropic gap and correlation length
[29]. The question of when such a superconductor can be
regarded as dirty is beyond the scope of this paper.

The results presented in this paper are valid for gran-
ular superconductors and Josephson arrays. They do ex-
plain semiquantitatively the ns − Tc correlations in or-
dinary and in high Tc superconductors. This obviously
does not prove that the latter conform to the näıve model
discussed. However, it might be taken as further evidence
that the inhomogeneities, which do exist [20] in these ma-
terials, play a role in their fascinating physics.

Conclusions.—The examination of the model for a
granular, inhomogeneous superconductor reveals that it
can mimic a dirty-limit material. Scaling relations may
be derived in the two limits of a simple granular su-
perconductor model. In the large grain, high resistivity
case [∆(0)/ωL & 1, gn ≪ 1] Uemura-type Tc ∝ ns (or
Tc ∝ ρs0) scaling is expected; however, in the small re-
sistance case [∆(0)/ωL & 1, gn ≫ 1] it is demonstrated
that the Tc ∝ ρs0ρdc scaling described by Homes et al.
is expected. In the small grain, small resistance case
[∆(0)/ωL < 1, gn ≫ 1], Tc ∝ ρs0ρdc is again expected.
Within the context of the high-temperature supercon-
ductors, the high-resistivity case corresponds to the un-
derdoped (pseudogap) region of the phase diagram where
Uemura-type scaling is observed, while the low-resistivity
case corresponds to the optimally and overdoped region
where the pseudogap is largely absent and Tc ∝ ρs0ρdc is

observed rather than Tc ∝ ρs0.
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