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A formula for the laser linewidth of arbitrary cavities in the multimode non-linear regime is derived
from a scattering analysis of the solutions to semiclassical laser theory. The theory generalizes
previous treatments of the effects of gain and openness described by the Petermann factor. The
linewidth is expressed using quantities based on the non-linear scattering matrix, which can be
computed from steady-state ab initio laser theory; unlike previous treatments, no passive cavity
or phenomenological parameters are involved. We find that low cavity quality factor, combined
with significant dielectric dispersion, can cause substantial deviations from the Schawlow-Townes-
Petermann theory.
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The intrinsic linewidth of a laser arises from quantum
fluctuations and would be zero in the absence of spon-
taneous emission. It is the most important property of
lasers which arises from the quantization of the electro-
magnetic field. Its value depends on the properties of
the specific laser cavity and gain medium, and was first
calculated in the seminal work of Schawlow and Townes
(ST), who found the famous linewidth formula [1]

δωST =
~ω0γ

2
c

2P
, (1)

where ω0 is the frequency of the laser mode, γc is the
linewidth of the relevant passive cavity resonance, and P
is the modal output power. Note that in this formula the
properties of the gain medium are absent.

Improved theoretical analyses over the next several
decades found three multiplicative corrections to the ST
formula, all of which tended to increase the linewidth,
in some cases by large factors [2, 3]. One correction fac-
tor arises from incomplete inversion of the gain medium,
and a second one from indirect phase fluctuations due
to the instantaneous intensity change caused by spon-
taneous emission (the Henry α factor) [3]. The third
correction and the main focus of this Letter is the Pe-
termann factor, K. First discovered in the context of
transverse gain-guided semiconductor lasers [4] and sub-
sequently generalized [2, 5–10], this factor arises from the
non-Hermitian nature of the laser wave equation, due to
the presence of the gain medium as well as the openness
of the laser cavity (i.e. spatially non-uniform outcoupling
loss). It always leads to an enhancement of the linewidth,
even with uniform gain and no gain-guiding. Typically,
it is calculated from the non-orthogonal passive cavity
resonances as

K =

∣∣∣∣∫ dr |ϕ(r)|2∫
dr ϕ(r)2

∣∣∣∣2 , (2)

where the integrals are taken over the cavity [11]. In ef-
fect, the Petermann factor changes the ST linewidth by
the replacement γ2

c → Kγ2
c . This is a significant correc-

tion for lasers with large outcoupling, in the range 1.1–
1.6 for the conventional semiconductor lasers studied in
Ref. [2]. We shall refer to the standard theory, inclu-
sive of the Petermann factor, as the Schawlow-Townes-
Petermann (STP) theory.

The extensive and impressive literature on the Peter-
mann factor [2, 4–10, 12] has, with one major exception
[9], only treated single-mode lasing near threshold, ne-
glecting the effects of spatial hole-burning. And apart
from a recent paper by Schomerus [12], the literature has
exclusively treated one-dimensional or waveguide lasers,
and thus is not directly applicable to the wide vari-
ety of complex laser cavities developed during the past
twenty years, such as microdisk and deformed-disk, pho-
tonic crystal, and random lasers. In this Letter, we de-
rive a general formula for the intrinsic laser linewidth
in arbitrary cavities, which is valid far from threshold,
with strong spatial hole-burning, and in the multimode
regime. The formula relates the linewidth to a non-linear
self-consistent scattering matrix (S-matrix), and is based
on the recently-developed Steady-state Ab initio Laser
Theory (SALT) [13–16].

SALT is a method for solving the steady-state proper-
ties of arbitrary lasing structures, without directly inte-
grating the semiclassical laser equations. “Semiclassical”
here refers to the fact that the field is treated via the clas-
sical Maxwell equations, whereas the properties of the
gain medium are obtained from a quantum-mechanical
calculation of a multi-level atom. SALT treats the open-
ness of the cavity exactly, and the non-linear modal inter-
actions and gain saturation are included to infinite order.
Its results agree well with numerical integration of the
laser equations, but it is computationally much more ef-
ficient [17, 18]. It has been applied to complex laser struc-
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tures such as random [15] and photonic crystal lasers [19].
We shall show that the quantum input-output theory of
Refs. [20, 21] can be used to calculate quantum fluctu-
ation properties ab initio, in terms of quantities obtain-
able from SALT. SALT associates each laser mode with a
scattering pole—an eigenstate of a classical nonlinear S-
matrix with infinite eigenvalue—at a real frequency. We
derive a formula for the linewidths of a multimode laser in
terms of the residues of these poles and a certain norm of
the lasing eigenstate. For a low-Q cavity, the generalized
linewidth formula typically finds substantial deviations
from the STP prediction: typically the linewidth is sig-
nificantly less than the standard theory predicts, and in
the random laser example shown below, the laser has an
anomalous power-dependence near threshold.

The multimode SALT equations are [16]:[
∇2 +

(
εc(~r) +

γ⊥D(~r)

ωµ − ωa + iγ⊥

)
ω2
µ

]
Ψµ(~r) = 0,

D(~r) = D0(~r)

[
1 +

n∑
ν=1

Γν |Ψν(~r)|2
]−1

,

(3)

where Ψµ is the µth steady-state lasing mode, ωµ is its
frequency, εc is the passive cavity dielectric function, γ⊥
is the gain medium linewidth, ωa is the atomic transi-
tion frequency, D0(~r) is the (possibly spatially-varying)
pump, and Γν ≡ γ2

⊥/(γ
2
⊥ + (ων − ωa)2) is the gain

curve. The effective pump D(~r) contains an infinite-
order nonlinear “hole-burning” term, which gives rise to
mode competition and gain saturation in a quantitatively
precise manner. These coupled, time-independent, non-
linear equations are solved with the boundary condition
of purely outgoing waves with frequency ωµ at infinity;
the solution algorithm is discussed in Refs. [15, 16, 18].

From the solution to (3), we can compute a self-
consistent S-matrix for any complex frequency ω, not
just the discrete lasing frequencies ωµ [22]. By definition,
this S-matrix has one or more poles on the real-ω axis,
at ω = ωµ. It can be used to study the effects of vacuum
fluctuations and spontaneous emission [23]. Suppose the
cavity has scattering channels indexed by j = 1, 2, . . . , N
(e.g. waveguide modes or spherical waves, depending on
the scattering geometry). The input and output photon
operators, denoted by a1, . . . , aN and b1, . . . , bN respec-
tively, obey an “input-output” relation [24]:

bi(Ω) =
∑
j

Sij(Ω) aj(Ω) +
∑
ρ

Viρ(Ω) d†ρ(−Ω). (4)

Here the frequency Ω is measured from the lasing fre-
quency of interest, which we denote by ω0, Ω ≡ ω − ω0.
The dρ’s are ladder operators for the external reser-
voirs corresponding to the gain medium, with the index
ρ denoting appropriate degrees of freedom in the cav-
ity/reservoir [25].

In order for a, b, and d to obey canonical commutation
relations, e.g. [ai(Ω), aj(Ω

′)] = δij δ(Ω−Ω′), the S-matrix

must be related to the reservoir coupling coefficients by
the fluctuation-dissipation relation [24]

SS† − V V † = 1, (5)

where 1 is the N ×N identity matrix. Next, we define

aj(t) =
1√
2π

∫
dΩ aj(Ω) e−iΩt, (6)

and similarly for bj(t) and dρ(t), describing quantum am-
plitudes for the field envelopes. Inserting into (4) gives

bi(t) =

∫
dt′

[∑
k

∫
dΩ

2π
Sik(Ω) e−iΩ(t−t′)

]
ak(t′)

+

∫
dt′

[∑
ρ

∫
dΩ

2π
Viρ(Ω) e−iΩ(t−t′)

]
d†ρ(t

′).

(7)

The first term describes scattering of input photons, and
the second describes emission from the gain medium.

S is strongly constrained by its symmetries. Firstly,
optical reciprocity [26] implies that S can be written as a
symmetric matrix, so it has the eigenvalue decomposition

S =
∑
n

|ψn〉
sn

〈ψ∗n|ψn〉
〈ψ∗n|, (8)

where each |ψn〉 denotes a right eigenvector of S with
eigenvalue sn, and 〈ψ∗n| denotes its unconjugated trans-
pose. These eigenvectors are bi-orthogonal (〈ψ∗m|ψn〉 = 0
for m 6= n) and power-normalized (〈ψn|ψn〉 = 1).

Suppose that εc(r) is real. The S-matrix of the passive
cavity is unitary, and for a high-Q cavity with a resonance
near ω0, one of the eigenvalues is approximately [27]:

s0(Ω) ≈ eiϕ(Ω) Ω− iγc/2
Ω + iγc/2

,

where ϕ is an irrelevant phase factor and γc is the cavity
lifetime. The eigenvalue is unimodular for real Ω, and, as
required by time-reversal symmetry, its poles and zeros
lie at conjugate positions in the complex Ω plane.

Adding gain pushes the zero and pole up in the com-
plex frequency plane. The eigenvalue takes the form

s0(Ω) ≈ eiϕ
′(Ω) Ω− iΓz

Ω + iΓp
, (9)

where Γz and Γp are the distances of the zero and pole
from the real axis. The lasing threshold is reached as
Γp → 0−; within the high-Q approximation the eigen-
value takes the form (9) with Γz ≈ γc (the zero moves up
the same distance as the pole). This approximation leads
directly to the ST formula (high Q will imply K ≈ 1).
For arbitrary Q, the S-matrix near Ω = 0 takes the form
(9), with a generalized residue ΓL(Ω) replacing Ω− iΓz.
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We denote the eigenvector corresponding to this diverg-
ing eigenvalue by Ψ. In the S-matrix decomposition (8),
the term with s0 dominates, so we can write

S ≈ |Ψ〉 s0

〈Ψ∗|Ψ〉
〈Ψ∗|. (10)

Using this together with Eq. (5) gives

V V † ≈ |Ψ〉 1

|ΨTΨ|2
|ΓL|2

Ω2 + Γ2
p

〈Ψ|. (11)

This equation is satisfied by the ansatz

Viρ =
1

ΨT
LΨL

ΓL
Ω + iΓp

Ψi
L uρ, (12)

where u is some vector satisfying
∑
ρ u
†
ρuρ = 1, and

Ψi
L, is the ith component of the S-matrix eigenvector

for the lasing mode. Note that this relation applies not
just to the first lasing mode at threshold, but also for
above-threshold steady-state lasing modes, using the self-
consistent, non-linear S-matrix obtained from SALT.

Inserting (12) into (7) and performing the resulting
contour integrals gives

bi(t) = − ΓLΨi
L

ΨT
LΨL

∫ t

dt′e−Γp(t−t′)F (t′) (13)

F (t) ≡
∑
j

ΨLj aj(t) + i
∑
ρ

uρ d
†
ρ(t). (14)

Thus each output photon is a superposition of incoming
photons and reservoir excitations from all earlier times.

Above threshold, the gain medium undergoes stimu-
lated emission, and the laser field acquires a mean value,
Bi, so that Eq. (13 becomes:

bi(t) = Bi −
ΓLΨi

L

ΨT
LΨL

∫ t

dt′e−Γp(t−t′)F (t′), (15)

where Bi, the steady-state classical outgoing field ampli-
tude in channel i, is related to Ψi

L by

|Bi|2 =
P

~ω0

∣∣Ψi
L

∣∣2 (16)

where P is the total output power of the mode.
Due to the fluctuation operator F (t), the phase of the

output field has a quantum uncertainty; the rate at which
this uncertainty increases with time gives the laser coher-
ence time scale. The fluctuation-induced phase changes
are fed back into the classical value of Bi, causing a ran-
dom drift in the phase of the laser field. We ignore this
feedback, instead taking a fixed value for Bi for all t.
This is justifiable because the integrand in (15) vanishes
exponentially for t′ . −T , where T = 1/Γp will turn out
to be the coherence time. The calculations below apply
to times much shorter than T .
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FIG. 1: (color online) Output power and cavity decay rates
γ2
L for two uniformly pumped one-dimensional microcavity

lasers. A slab of gain material with background ε = 1.2,
bounded on the left by a perfect mirror and on the right by
an ε = 9 slab (5% of the total length) acting as a partially
transmitting mirror (left schematic). A random laser consist-
ing of 50 slabs of gain material, each with background ε uni-
formly distributed in [1, 1.2] (right schematic). Both systems
exhibit two-mode lasing at the high end of the pump range.
Plots (a),(b) show modal output powers vs. the normalized
pump [16]. Plots (c),(d) show the square of the generalized
cavity decay rate γ2

L ≡ |ΓL|2/|ΨT
LΨL|2 which determines the

linewidths according to Eq. (21). Solid and dashed curves
denote modes 1 and 2 respectively. The horizontal dotted
lines show the conventional result, Kγ2

c , computed from the
passive cavity quasimodes, which fails for the random laser.

We choose the arbitrary global phase of Bi to be real
and positive for the specific channel i, and study the
quantum fluctuations of the phase via the Hermitian
quadrature operator [29]

θi =
i(b†i − bi)

2Bi
, (17)

which for small phase angles corresponds to the phase of
the laser output in channel i. Using (14) and (15), we
compute the quantity 〈θi(t1)θi(t2)〉, taking 〈a〉 = 〈d〉 =

〈a†i (t1) aj(t2)〉 = 0 and taking the white noise correlator〈
dρ(t1) d†ν(t2)

〉
= fρ δρν δ(t1 − t2), (18)

where fρ = [P2/(P2 − P1)]ρ describes the local popu-
lation inversion [24]. The zero-point contributions to
〈θi(t1)θi(t2)〉 from the photon input and the gain medium
cancel exactly, leaving

〈θi(t1)θi(t2)〉 =
|ΓL|2

|ΨT
LΨL|2

~ω0

4ΓpP
e−Γp|t1−t2| f̄ , (19)
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FIG. 2: (color online) Laser linewidth vs. inverse modal out-
put power 1/P , for the two lasers studied in Fig. 1. The
linewidths are computed using Eq. (21), assuming the inver-
sion factor f̄ = 1. (a) The high-Q cavity laser linewidths
show the standard 1/P dependence for both modes. (b)
The linewidth of the first mode of the random laser devi-
ates strongly from the 1/P Schawlow-Townes-Petermann de-
pendence at lower pump values. At large pump values the
linewidths of both mode 1 (solid curve) and mode 2 (dashed
curve) vary as 1/P , but with values roughly half that of the
standard STP prediction (dotted curve).

where P is the modal output power from Eq. (16), and

f̄ ≡
∑
ρ

fρ|uρ|2 (20)

is the inversion factor correction mentioned at the begin-
ning of this Letter.

The phase uncertainty accumulated over time ∆t is〈
[θi(t+ ∆t)− θi(t)]2

〉
= ∆ω∆t+O(∆t2), where

∆ω =
|ΓL|2

|ΨT
LΨL|2

~ω0

2P
f̄ ≡ ~ω0γ

2
L

2P
f̄ (21)

This is our central result: a general linewidth formula in
which |ΓL|2/|ΨT

LΨL|2 ≡ γ2
L replaces the quantity Kγ2

c in
the conventional Schawlow-Townes-Petermann linewidth
formula. We can think of γL as a generalized cavity decay
rate, corrected for the presence of gain, openness, hole-
burning, and saturation. It is calculable ab initio, with no
phenomenological parameters, from the non-linear classi-
cal S-matrix of SALT. The lasing eigenvector is found by
diagonalizing the S-matrix at each lasing pole, and the
residue ΓL is found by numerically integrating the rele-
vant eigenvalue of the S-matrix around the pole. Eq. (21)
only includes the contribution to the laser linewidth from
direct phase fluctuations; the indirect phase fluctuations
[3] have been omitted for simplicity.

The relation of the Petermann factor to the residue
of the lasing pole for a waveguide laser was emphasized
early on by Henry [6], and developed for more general
cavities in an S-matrix formulation in Refs. [12, 30], but
in all previous cases for a single lasing mode at thresh-
old, i.e. without non-linear effects. Goldberg et al. [9]
gave an excellent and detailed analysis of the linewidth
for multimode lasing, including non-linear effects, but us-
ing an approach applicable only to one-dimensional cav-
ities with spatially uniform dielectric functions. To our

knowledge, our Eq. (21), combined with SALT, is unique
in providing a quantitative method for calculating the
intrinsic laser linewidth in arbitrary cavities and pump
profiles in the multimode, non-linear regime. Assuming
steady-state multimode lasing exists, the present theory
makes no significant further approximations, and hence it
can be used to evaluate the validity of the STP linewidth
formula [2].

We can connect Eq. (21) to previous results involv-
ing quasi-modes, such as Refs. [4, 5, 7], by examining
the S-matrix of a passive cavity. A quasimode ϕ(r) is
a purely-outgoing solution to the wave equation for a
passive cavity with dielectric function ε(r), at complex
frequency ωp, where Im(ωp) ≡ −γc/2. Let Ψ be the S-
matrix eigenvector for this pole, normalized by Ψ†Ψ = 1,
and let Γ be the residue of the eigenvalue. It can be
shown that [22]

Im

[
ω2
p

∫
dr ε(r) |ϕ(r)|2

]
= −Re[ωp], (22)∫

ε(r)ϕ2(r) =

[
i

Γ
− i

2ωp

]
ΨTΨ. (23)

Here the spatial integrals are taken over the cavity. For
real ε(r), and in the limit |kp| � Γ ∼ γc, (22)-(23) give

|Γ|2

|ΨTΨ|2
≈
∣∣∣∣∫ dr ε(r) |ϕ(r)|2∫

dr ε(r) ϕ(r)2

∣∣∣∣2 γ2
c = Kγ2

c . (24)

Thus, in this slightly generalized version, Kγ2
c is approx-

imately equal to our γ2
L, when evaluated for the passive

cavity. Note that both (24) and its active-cavity general-
ization in Ref. [12] do not include the effects of dielectric
dispersion, which can have a significant effect on γ2

L.
Fig. 1 compares γ2

L to Kγ2
c for two one-dimensional

microcavity multimode lasers: a high-Q, uniform cav-
ity for which the two quantities agree rather well, and
a low-Q random laser, for which major deviations are
found. For the random laser, at pump strengths up to
four times threshold, γL for the first lasing mode depends
strongly on P , causing the overall power dependence to
depart substantially from the standard 1/P dependence
(Fig. 2). For higher pump strengths, γL is approximately
constant, but the conventional linewidth prefactor Kγ2

c

overestimates it by almost a factor of two. In the stan-
dard theory, the STP linewidth is expected to be a lower
bound set by field quantization, but insofar as the usual
STP formula relies on passive cavity quantities it is not
a reliable bound. Analysis of our results indicates that
this deviation from the STP theory arises from low cav-
ity Q and from the frequency dispersion of the dielectric
constant of the gain medium, which cause a significant
reduction of the residue of the lasing pole at threshold
compared to its value in the passive cavity. We do not
believe that the apparent violation of the STP bound in-
dicates any new quantum fluctuation properties of the
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laser. In future work, our generalized linewidth formula
will allow such issues to be studied systematically.
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