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In his comment [1], J. E. Moussa (JEM) raises con-
cerns regarding the accuracy of our recently published
Machine Learning (ML) model [2]. Our performance es-
timates, based on cross-validated Kernel Ridge Regres-
sion, amount to less than 10 kcal/mol mean absolute
error (MAE) with respect to DFT-PBE0 [3, 4] predic-
tions of atomization energies, using a training set of more
than 7000 small organic molecules from the GDB-13 data
set [5]. As such, the ML model achieves an accuracy sim-
ilar to generalized gradient DFT, and significantly ex-
ceeds that of Hartree-Fock or local density approximated
DFT [6].

In our Letter we presented numerical evidence that
ML models can be built using (i) sufficient examples and
(ii) a molecular representation based on Cartesian co-
ordinates and elemental composition without explicitly
accounting for the electronic degrees of freedom. There-
fore, performance of our ML model should exclusively
be assessed with respect to methods that perform sim-
ilar maps, i.e. {ZI ,RI} 7→ E. In order to place our
performance estimates into the general context of atom-
istic simulation, however, our Letter also provides results
for semi-empirical methods, namely bond counting (BC)
(MAE 71 kcal/mol) and PM6 (73 kcal/mol), along with
ML model results (15 kcal/mol).

Since pre-conceived knowledge about underlying chem-
ical bonding is exploited, BC and PM6 differ from our
ML model. Obviously, explicit fitting of BC and PM6
parameters to atomization energies of GDB molecules,
instead of enthalpies of other data sets, will improve
their performance. It is only after introducing knowl-
edge about covalent bond distances and order (single,
double, triple) that the MAE of BC decreases to the
10 kcal/mol quoted by JEM. Furthermore, and unlike
BC, the ML model can be used for estimating binding
curves [2]. Semi-empirical models, such as PM6, result
from decades of parameterization, and it is not surprising
that they can be reparameterized to improve atomization
energies. By contrast, the virtue of our ML approach is
that it is not only accurate and fast but general, i.e. it can
be trained and used without electronic structure knowl-
edge.

JEM discusses the remaining error of our ML model.
For acetylene, the effect of coarse graining is illustrated

for one of the degrees of freedom that can be chosen such
that the Coulomb-matrix’ eigenvalues remain constant.
When using instead the Frobenius norm as a measure
of distance between Coulomb matrices (footnote 25 [2]),
and after cross-validated training on acetylene geometries
supplied by JEM, the ML model yields out-of-sample es-
timates that reproduce DFT-PBE0 energies with a MAE
of 0.24 kcal/mol (Fig. 1). According to JEM,the Frobe-
nius norm producing identical coordinates for “homomet-
ric molecules” [7], aka. enantiomers, might be another
origin of error. We believe this to be desirable since the
employed DFT potentials conserve parity, i.e. particle in-
teraction invariance under space inversion at the molec-
ular origin of geometry. Electroweak quantum chemistry
results would be required to account for parity violation
in molecules [8, 9]. Finally, JEM blames perceived lack of
size-consistency for the error residual of our ML model.
We have statistically accounted for the effect of size-
consistency on atomization energies by imposing atomic
dissociation at interatomic distances three times larger
than in equilibrium (footnote 37 [2]). Regarding the scal-
ing properties mentioned by JEM, we believe conclusive
statements to be premature.

To improve the ML model we propose the following: (i)
coverage of molecular space for training; increase number
of constitutional and conformational isomers. (ii) flexi-
bility in kernel function space, e.g. multiple kernel learn-
ing [10]. (iii) molecular representation; see our Letter [2]
for requirements. (iv) explore various distance metrics
between Coulomb matrices. We conclude that our ML
model is capable of yielding fast and accurate atomiza-
tion energy estimates out of sample, without any prior
knowledge about electronic structure effects such as co-
valent bonding or electronic configuration.
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FIG. 1: (Color online) Blue line: PBE0. Red dots: ML model
using Frobenius norm of, and trained on, Coulomb matrices
of geometries corresponding to JEM’s example.
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