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In a recent Letter [1], the authors construct a machine
learning (ML) model of molecular atomization energies,
which they compare to bond counting (BC) and the PM6
semiempirical method [2]. However, their ML model was
trained and tested on density functional theory (DFT)
energies while BC and PM6 are fit to standard enthalpies.
For fair comparison, bond energies are refit to DFT data
and PM6 is converted to an electronic energy using per-
atom corrections [3]. BC and PM6 both perform better
than the ML model and are free of large outliers in their
error distributions as shown in Fig. 1.
As noted in Footnote 25 of the Letter, some ML model

error may originate from the coordinate system choice.
The n eigenvalues of the Coulomb matrix correspond to
an equienergy 2n-dimensional space of n-atom molecules
rather than one molecule. For n = 3, this corresponds to
the 3 translations and 3 rotations that naturally preserve
the energy of an isolated molecule. For n > 3, the space
includes unphysical molecular deformations that destroy
structural rigidity. Fig. 2 shows this with a distortion
of acetylene (C2H2) that preserves its ML energy and
coordinate, (53.058, 21.149, 0.290, 0.219).
It is suggested in Footnote 25 of the Letter that the

n2 sorted entries of a Coulomb matrix might be utilized
instead of its n eigenvalues as a ML coordinate system.
This eliminates the dimensional deficiency, but produces
identical coordinates for homometric molecules [5] that
don’t necessarily have equal energies. A computationally
expensive alternative is the equivalence class of permuted
Coulomb matrices with distance metric

d(M,M′) = min
P

‖M−PTM′P‖F (1)

for Coulomb matrices M and M′, permutation matrices
P, and the Frobenius matrix norm.
Another possible source of ML model error is its lack

of size-consistency. Even if the energy of two molecules
A and B are accurately modeled in isolation, there are
no guarantees that the well-separated pair of molecules
A+B will be similarly accurate. This requires explicitly
filling the chemical compound space with a sufficiently
dense set of training molecules, which likely leads to an
O(αn) computational complexity for n atoms (α > 1).
While benchmarks are favorable for n ≤ 7, the ML model
cannot scale favorably compared to O(n) classical force
fields or O(n3) DFT/semiempirical methods. Alternative
ML methods [6] enforce size-consistency by modeling an
intensive quantity, per-atom energy, rather than directly
modeling the extensive total energy and control costs by

exploiting nearsightedness [7].
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FIGURES

FIG. 1. Error histograms (EDFT − Emodel), mean absolute
errors (MAE), and root-mean-square errors (RMSE) for PM6,
BC, and ML models compared to DFT on the 7169 molecules
of the GDB-13 set [4] with the formulae CvHwNxOySz for
3 ≤ v + x+ y + z ≤ 7.

FIG. 2. (color online) A continuous deformation of acetylene.
(left) Hydrogen atoms follow the closed curve with the line
connecting them fixed to the origin. Carbon atoms remain
near their equilibrium positions. (right) Atomization energy
as a function of H-origin-C angle.
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