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Abstract

We describe x-ray photon correlation spectroscopy (XPCS) experiments tracking the motion of

gold nanoparticles within solutions of high-molecular-weight polystyrene. Over displacements from

nanometers to tens of nanometers, the particles undergo subdiffusive motion that is dictated by

the temporal evolution of the entangled polymer mesh in the immediate vicinity of the particles.

The results thus provide a novel microscopic dynamical characterization of this key structural

property of polymers and more broadly demonstrate the capability of XPCS-based microrheology

to interrogate heterogeneous mechanical environments in nanostructured soft materials.

PACS numbers: 66.10.cg, 66.30.hk, 83.80.Rs, 83.85.Hf
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Complex fluids – such as polymer and surfactant solutions – are characterized by internal

structure on the nanometer or micrometer scale that creates complicated viscoelastic behav-

ior. Due to the microscopic heterogeneity of these systems, the relation between macroscopic

mechanical properties and microscopic structure and dynamics is rarely straightforward. Mi-

crorheology, in which colloids suspended in the fluid probe the mechanical environment, has

emerged as a technique capable of illuminating this connection. Traditionally, microrheology

has employed colloids that are much larger than the scale of the intrinsic heterogeneity of

the complex fluid, so that Brownian motion of the probes reflects the material’s macroscopic

viscoelastic properties [1]. However, if the probe size is comparable to or smaller than the

scale of the heterogeneity, the correspondence with macroscopic rheology breaks down [2],

leading to alternative information about the microstructure and micromechanics that might

otherwise be inaccessible. This feature of microrheology has been demonstrated in several

microscopy and dynamic light scattering (DLS) studies [2–9]. For example, experiments

on networks of the semi-flexible biopolymer F-actin have tracked changes in the mobility

of micrometer-sized colloids as the colloid size is varied with respect to the network mesh

size [7, 9].

In many important complex fluids the scale of the relevant internal structure is well

below the micrometer scale. For example, in solutions of high-molecular-weight flexible

polymers, the relevant entities are chain entanglements. The characteristic lengths of this

microstructure that emerge from models of entanglements are typically on the nanometer

scale, and the time scales characterizing their dynamics can extend to many seconds. While

such models account successfully for various macroscopic properties of polymer melts and

solutions [10], such as scaling behavior of the rheology, this challenging combination of

length and time scales has permitted few direct microscopic investigations of entanglement

behavior [11–15]. Here, we report an x-ray photon correlation spectroscopy (XPCS) study

of nanoparticle motion within solutions of high-molecular-weight polystyrene (PS) in which

we tune the particle size to the length scales relevant to entanglements, thus providing a

local microrheological viewpoint. The particle motion is subdiffusive with a mean-squared

displacement that grows as 〈∆r2(t)〉 ∼ tα with α = 0.27 to 0.53 depending on solution

parameters. Studies of particle motion within crowded macromolecular environments have

observed similar subdiffusion [16–20], but the underlying mechanisms for this behavior are

as yet unclear. By varying polymer molecular weight and comparing the XPCS results with
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macroscopic rheology, we conclude that the subdiffusive motion in the high-molecular-weight

solutions is dictated by fluctuations of the entanglement mesh within the local environment

of the nanoparticles.

The systems were solutions of PS in xylene containing dilute dispersions of Au nanopar-

ticles with concentration 0.04% Au by volume. The nanoparticles, with radius ≈ 3 nm, were

synthesized following procedures described elsewhere [21]. To stabilize the particles, their

surfaces were functionalized with thiol-terminated PS chains with molecular weight 13300

g/mol [21, 22]. The resulting hydrodynamic radius of the particles was approximately 20

nm [22]. Solutions with PS molecular weights from Mw = 3 × 105 g/mol to 9 × 106 g/mol

and polymer volume fractions from φ = 0.1 to 0.4 were included in the study.

Rheometry on the solutions over frequencies 0.001 s−1 < ω < 100 s−1 revealed complex

shear moduli, G∗(ω) = G′(ω) + iG′′(ω), typical of entangled polymers. Figure 1 shows the

storage and loss modulus at two temperatures for Mw = 1 × 106 g/mol and φ =0.3. The

form of G∗(ω) and its temperature dependence are representative of all the solutions. At

intermediate frequencies, G′(ω) is approximately constant and G′(ω) > G′′(ω). This plateau

is associated with a transient rubbery response due to the mesh of entanglements, and the

plateau value Ge can be related to the entanglement density, Ge = kBT/L
3, where L3 is

the volume per entanglement [23]. In terms of lengths commonly discussed in models of

entanglements, the tube diameter a and correlation length ξ, L3 = a2ξ. From measurements

of each solution’s plateau modulus, we obtained values of L in the range 5 < L < 20

nm, with L increasing with decreasing φ as expected. We note that L, which represents a

typical distance between entanglements, is similar to the nanoparticle hydrodynamic radius,

indicating a match between the scale of the transient network structure dictating the solution

rheology and the probe size.

At low frequencies, the solutions are fluid with G′′(ω) > G′(ω) and G′′(ω) ∼ ω and with

zero-shear-rate viscosity η0 = limω→∞G′′(ω)/ω. We identify the reptation time trep [23] as

the inverse of the frequency ωrep where G
′′(ωrep)/G

′(ωrep) = 1. For example, from Fig. 1, we

obtain reptation times for Mw = 1×106 g/mol and φ =0.3 of trep = 6.3 s and 0.083 s at -5 C

and 50 C, respectively. Within models of entanglements, trep is the time for entanglements

along a chain to relax [23].

To track the nanoparticle motion, we employ XPCS. Experiments were conducted at

Sector 8-ID of the Advanced Photon Source using 7.35 keV x-rays following established pro-
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FIG. 1: Storage (solid) and loss (open) modulus of PS in xylene with Mw = 1×106 g/mol and φ =

0.3 containing a dilute concentration of Au nanoparticles at T = -5 C (circles) and 50 C (triangles).

The dashed line indicates the plateau modulus.

cedures [24]. Samples were contained in sealed stainless-steel holders with sample thickness

2 mm and with kapton windows for transmission scattering. The coherent scattering inten-

sity, recorded by a direct-illuminated CCD area detector, was measured over wave vectors

0.04 nm−1 < Q < 0.21 nm−1. Time-resolved series of scattering intensities were analyzed

to determine the intensity time-autocorrelation function g2(Q, t) over delay times 0.0167 s

< t < 1000 s. Scattering from the Au dominates the signal in this Q range, and the intensity

resembles the form factor for an isolated particle [22]. Thus, g2(Q, t) reflects the dynam-

ics of the dilute nanoparticle suspension. Following a temperature change, measurements

were performed only after any transient effects vanished, so that g2(Q, t) corresponded to

nanoparticle motion within equilibrated, quiescent solutions.

Figure 2 displays g2(Q, t) for Mw = 1 × 106 g/mol and φ = 0.3 at T = -20 C and Q =

0.09 nm−1. The solid line through the data is the result of a fit to a stretched-exponential

form,

g2(Q, t) = 1 + bg2
1
(Q, t) = 1 + b[exp[−2(t/τSE)

α]] (1)

where b is the Siegert factor and g1(Q, t) is the normalized dynamic structure factor. The

exponent α is significantly less than one for all solutions (e.g., in Fig. 2, α = 0.45 ± 0.05),
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FIG. 2: XPCS intensity autocorrelation function for PS solution with Mw = 1×106 g/mol and φ =

0.30 containing a dilute concentration of Au nanoparticles at T = -20 C and Q = 0.09 nm−1. The

line is the result of a fit to a stretched-exponential form, Eq. (1), with exponent α = 0.45 ± 0.05

characterizing the subdiffusive nanoparticle motion. The inset shows α for different solutions as a

function of the number of entanglements per chain, N = Mwφ
−1.3/Me(1), where Me(1) = 17000

g/mol is the entanglement molecular weight of PS melt [10].

indicating a highly stretched decay. The exponent shows no systematic dependence on T or

Q over the full experimental ranges (-20 C < T < 50 C and 0.04 nm−1 < Q < 0.21 nm−1).

However, as shown in the inset to Fig. 2, α does vary with polymer molecular weight. We

discuss the possible significance of this variation below. Figure 3 displays the mean XPCS

relaxation time τ = τSEΓ(α
−1)/α, where Γ denotes the gamma function, scaled by solution

viscosity η0 as a function of Q for Mw = 1× 106 g/mol at different T and φ. As the results

indicate, the mean XPCS relaxation time varies with Q as a strong power law, τ ∼ Q−p.

(p ≈ 4 in Fig. 3.) Similar power-law behavior is observed for all solutions with p varying

weakly with Mw.

For dilute, noninteracting particles, g1(Q, t) is related to the particles’ mean-squared

displacement 〈∆r2(t)〉 through g1(Q, t) = exp(−〈∆r2(t)〉Q2/6), which by Eq. (1) leads to

p · α = 2 and 〈∆r2(t)〉 ∼ tα. Thus, the stretched-exponential correlation functions, α < 1,

imply anomalous, subdiffusive motion. For most solutions, p · α = 2 within experimental
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FIG. 3: Mean XPCS relaxation times normalized by solution viscosity as a function of wave vector

for solutions with Mw = 1× 106 g/mol and φ = 0.3 at T = -20 C (red circles), φ = 0.3 at T = -5

C (black Xs), φ = 0.3 at T = 10 C (green squares), φ = 0.3 at T = 25 C (blue inverted triangles),

φ = 0.3 at T = 50 C (red stars), and φ = 0.2 at T = 25 C (black diamonds). The dashed line

displays the relation τ ∼ Q−4.

uncertainty at all T . From the signal to noise in g2(Q, t) and the accuracy of the stretched-

exponential fits over the measurement wave vectors, we estimate that this subdiffusive mo-

tion extends at least over root-mean-squared displacements of 6 nm < 〈∆r2(t)〉1/2 < 50 nm.

That is, the subdiffusion extends to several times the entanglement spacing L.

To understand the nature of this subdiffusive nanoparticle motion and its connection with

the viscoelastic environment in the solutions, we compare the particle dynamics with the

solution rheology. In Fig. 3 the mean XPCS relaxation times are scaled by solution viscosity

η0, which varies at the different φ and T by more than a factor of 300. Nevertheless, the

scaled relaxation times collapse, indicating the nanoparticle motion depends on the same

microscopic friction factor [10] that enters the chain mobility.

A more surprising feature of the nanoparticle mobility is its dependence on polymer

molecular weight. The inset to Fig. 4 shows τ at 25 C and Q = 0.09 nm−1 as a function of

Mw for φ = 0.2 and 0.3. As the figure illustrates, τ ∼ M2.4
w . This strong dependence indicates

that entanglements play an important role in dictating the nanoparticle motion. However,
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FIG. 4: Average time tL for nanoparticles to move the entanglement spacing L as a function

of trep/N , where trep is the reptation time obtained from rheology and N is the entanglements

per chain. Included are data for all solutions and T for which both tL and trep are determined

accurately: Mw = 3×105 g/mol and φ = 0.3 (stars), 1×106 g/mol and 0.2 (pluses), 1×106 g/mol

and 0.3 (squares), 3 × 106 g/mol and 0.1 (Xs), 3 × 106 g/mol and 0.2 (diamond), 3 × 106 g/mol

and 0.3 (circles), 3× 106 g/mol and 0.4 (triangles), and 9× 106 g/mol and 0.3 (inverted triangles).

The line shows the relation tL = trep/N . Inset: Mean XPCS relaxation time at 25 C and Q =0.09

nm−1 versus PS molecular weight for solutions with φ = 0.3 (squares) and 0.2 (circles) along with

the results of power-law fits τ ∼ M2.4±0.1
W (solid lines). Also in the inset are the reptation times

(Xs) for φ = 0.3 at 50 C along with the result of a power-law fit, trep ∼ M3.2±0.2
w (dashed line).

consistent with expectations for highly entangled solutions [23], we find η0 ∼ Mz
w where

z = 3.2 ± 0.2. Thus, the particle mobility does not scale with the macroscopic viscosity as

polymer molecular weight is varied, as one would expect for the diffusivity of a larger colloid.

Rather, the trend in Fig. 4 marks a deviation of the subdiffusive nanoparticle motion from

the macroscopic properties of the solutions that we associate with the similarity between

the nanoparticle size and L. Indeed, XPCS experiments with the nanoparticles in PS melts,

where L is smaller, observed simple diffusion [25].

Recently, Rubinstein and coworkers considered theoretically the mobility of nanoparticles

in entangled polymers [26]. Particles significantly larger than the entanglement mesh were
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found to undergo simple diffusion with a rate set by the reptation time, which is propor-

tional to the macroscopic viscosity. However, for particles that were similar to the mesh

size, they identified an additional contribution to the mobility due to local fluctuations of

the mesh that allow particles to pass through “entanglement gates” and hop between neigh-

boring entanglement cages [26]. While the authors did not make explicit predictions about

the consequences of this mechanism, we hypothesize that such fluctuation-enabled hopping

dictates the observed subdiffusive motion.

Within this picture, the scaling of particle mobility with molecular weight, η0 ∼ M2.4
w , in-

dicates that such fluctuations become increasingly important the more highly entangled the

solution. Specifically, models of entanglement relaxation predict trep ∼ M3.4
w [10], and as il-

lustrated in the inset to Fig. 4, our results for trep are consistent with this scaling. Meanwhile,

the number of entanglements N along a chain varies as N = Mw/Me(φ) = Mwφ
−1.3/Me(1)

where Me(1) = 17000 g/mol is the entanglement molecular weight of PS melt [10]. To-

gether, these relationships suggest τ ∼ trep/N . Thus, particle mobility is enhanced over

that expected from macroscopic rheology linearly with the degree of entanglement.

To analyze this enhancement more quantitatively, we identify an average time tL for

particles to hop between neighboring entanglement cages. We determine tL from g2(Q, t) as

the time the particles’ root-mean-squared displacement reaches L, 〈∆r2(tL)〉
1/2 = L. Figure

4 displays tL plotted against trep/N . Included in the figure are data corresponding to all the

solutions in the study at all T for which we are able to determine accurately both tL and

trep. The data collapse onto a linear relation between tL and trep/N with a proportionality

constant that is remarkably close to unity. (A linear best fit gives tL = 0.3trep/N .)

This near equality between tL and trep/N demonstrates the central role of entanglements

in dictating the nanoparticle mobility. Support for this conclusion also comes from the range

of length scales over which the XPCS measurements track the motion. As mentioned above,

this length extends over distances of several L, thereby precluding a significant role in the

observed mobility for other, more local relaxation modes in the solutions. For example, in a

previous DLS study of colloids bound to polymer networks, the authors attributed localized

subdiffusive motion at short time scales (t < 1 ms) to Rouse dynamics [27, 28]. While

Rouse-like dynamics seems a natural explanation for the observed motion of the bound

colloids in that study, in the PS solutions in our study, the relaxation times of Rouse modes

with wavelengths near the entanglement spacings are in the millisecond range and therefore
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significantly shorter than the XPCS relaxation times. Thus, Rouse modes should fully relax

on time scales much shorter than those characterizing the nanoparticle motion. Further,

the model of Rouse dynamics predicts motion that is independent of matrix molecular

weight [27, 28], in stark contrast to the trend in the inset to Fig. 4(a).

The mechanism of fluctuation-enabled hopping through the entanglement mesh also pro-

vides an explanation for the subdiffusive nature of the motion. Anomalous diffusion, char-

acterized by power-law mean-squared displacements with α 6= 1, appears in many contexts

in nature [29]. A possible source of subdiffusion is the persistence of negative correlations

in the steps by objects undergoing Brownian motion [30, 31]. In the motion of a nanoparti-

cle in an entangled solution, a cause for negative correlations is suggested by the proposed

entanglement fluctuations. If such fluctuations are sufficiently long-lived, the most probable

direction of motion for a nanoparticle that passes through an entanglement gate is back to its

previous position, and this enhanced probability should decay with time as the fluctuation

decays. The degree of subdiffusion, which is expressed in the exponent α, and any possible

crossover to normal diffusion at late times hence convey information about the temporal

form of this time-dependent preference. As indicated in the inset to Fig. 2, α depends on

the number of entanglements per chain N in a manner that makes the motion increasingly

subdiffusive with increasing N , consistent with the notion that negative correlations are

enhanced in more strongly constrained environments. This observation to our knowledge

cannot be explained easily within existing mean-field models of entanglement formation and

relaxation [10, 23]. It would be interesting to see if a fully developed theory for nanoparticle

motion that incorporates the proposed hopping mechanism due to heterogeneous fluctua-

tions in the entanglement mesh [26] can capture the behavior. More broadly, these findings

demonstrate the strong potential of XPCS as a microrheological technique for interrogating

the local mechanical properties of soft materials. The wealth of important complex fluids

with nanometer-scale heterogeneity that are amenable to this approach should make further

application of XPCS to microrheology an important new tool for this field of research.
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[15] D. Wöll, E. Braeken, A. Deres, F. C. D. Schryver, H. Uji-i, and J. Hofkens, Chem. Soc. Rev.

38, 313 (2009).

[16] D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005).

[17] I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006).

[18] G. Guigas, C. Kalla, and M. Weiss, Biophys. J. 93, 316 (2007).

[19] R. A. Omari, A. M. Aneese, C. A. Grabowski, and A. Mukhopadhyay, Phys. Chem. B Lett.

113, 8449 (2009).
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