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The concept of “quantum electronic stress (QES)” is introduced and formulated within density
functional theory (DFT), to elucidate extrinsic electronic effects on the stress state of solids and
thin films in the absence of lattice strain. A formal expression of QES (σQE) is derived in relation to
deformation potential of electronic states (Ξ) and variation of electron density (∆n), σQE = Ξ∆n,
as a quantum analog of classical Hooke’s law. Two distinct QES manifestations are demonstrated
quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and
(2) in the form of surface stress induced by quantum confinement. Implications of QES in some
physical phenomena are discussed to underlie its importance.
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A fundamental property of solids is their stress state.
At the equilibrium lattice constant, the bulk of a crys-
talline solid is stress free, but the surface has intrinsic
non-zero stress and stress is commonly induced by any
form of lattice distortion [1]. The stress (strain) state of
a solid or thin film has profound effects on its thermody-
namic stability and physical and chemical properties [1–
3], and has been employed in a wide range of applications
such as electromechnical devices [4], mechanochemcial
sensors [5] and flexible electronics [6], and even to make
new nanotructures [7, 8]. Here, we introduce the concept
of “quantum electronic stress (QES)” which adds an in-
teresting electronical aspect to our conventional view of
“mechanical stress (MS)”. We formulate the expression
of QES within DFT, and use DFT calculations to demon-
strate quantitatively two distinct physical manifestations
of QES, in the form of bulk stress induced by charge car-
riers in a homogeneous system of crystalline solids and in
the form of surface stress induced by quantum confine-
ment in a heterogeneous system of nanoscale thin films.
We will then apply the concept of QES to elucidate a
few examples of physical phenomena that underlie the
importance and usefulness of QES.

Concept of QES. Figure 1 illustrates the fundamental
difference between the QES and MS using a simple model
of a one-dimensional (1D) lattice. Consider a lattice is
under compressive (Fig. 1a) or tensile lattice strain (ε),
such as in an epitaxial film due to lattice mismatch be-
tween the film and substrate [9, 10]. The “atomic” de-
formation energy can be expressed as E = (1/2)Y ε2V ,
where Y is Young’s modulus and V is the volume of
lattice. By definition, the lattice stress induced by the
lattice formation, which we refer to here as MS, is ex-
pressed as σM = (1/V )(dE/dε) = Y ε , the Hooke’s law.
Now, consider an equilibrium lattice in the absence of
strain (ε = 0), but electronically perturbed or excited,
such as an electron is kicked out by a photon leaving
behind a hole, as shown in Fig. 1b, which redistributes

the electron density. The change of electronic energy can
be expressed as E = µ∆N , where µ is electron chemi-
cal potential and ∆N is the change of number of elec-
trons. Then, the lattice stress induced by the electronic
change, which we refer to as QES, can be expressed as
σQE = (1/V )(dE/dε) = Ξ∆n, where Ξ = dµ/dε is de-
formation potential and ∆n is change of electron density.
The expression of σQE = Ξ∆n can be viewed as a quan-
tum analog of Hooke’s law. Below, we provide a formal
derivation of QES within DFT.
DFT formulation. Following DFT [11], the total en-

ergy functional of a solid is written as

E[n(~r), { ~Rm}] = Ee[n(~r)]+Eext[n(~r), { ~Rm}]+EI [{ ~Rm}]
(1)

Ee[n(~r)] is the electronic energy functional of charge
density n(~r), including kinetic and electron-electron in-

teraction energy, Eext[n(~r), { ~Rm}] is the ion-electron in-

teraction energy, EI [{ ~Rm}] is the ion-ion interaction

energy and { ~Rm} are atomic coordinates. First, for
completeness, we briefly review the quantum mechan-
ical derivation of MS. Following the seminal work by

FIG. 1: (Color online) Schematic illustration of MS versus
QES. (a) The MS (σM ) induced by applying a compressive
lattice strain (ε). Arrows indicate stress and force directions.
(b) The QES (σQE) induced by a hole excited by a photon.
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Nielsen and Martin [12], consider coordinate transforma-

tion ~r = (1 + {εij})~r
0 and ~Rm = (1 + {εij})~R

0
m under

strain {εij} , where ~r0 and { ~R0
m} are the electronic and

atomic coordinates of strain-free equilibrium lattice. Let
n0(~r0) and nε(~r) be the ground-state electron density be-
fore and after strain is applied. By definition, the stress
tensor is expressed as

σM
ij =

1

V

dE[n(~r), { ~Rm}]

dεij
|
nε,{~Rm}

=
1

V

[

∫

V

(

δ(Ee + Eext)

δn(~r)

)

δn(~r)

δεij
d~r +

∑

m

∂ER

∂ ~Rm

~Rm

∂εij

]

(2)

where ER = Eext+EI . Since n
ε(~r) is the ground-state

electron density at ~r and { ~Rm}, according to Hohenberg-

Kohn theorem [11], we have
(

δ(Ee+Eext)
δn(~r)

)

nε,{~Rm}
= 0

and Eq. (2) becomes

σM
ij =

1

V

[

∂ER

∂εij

]

nε,{~Rm}

(3)

For simplicity, assuming hydrostatic strain,εij = εδij ,
we expand ER in ε

ER[n
ε, { ~Rm}] = ER[n

ε, { ~R0
m}] + ε

∑

m

~R0
m

(

∂ER

∂ ~Rm

)

~R0
m

+
ε2

2

∑

m

[

(

~R0
m ·

∂

∂ ~Rm

)2

ER

]

~R0
m

+ ...

(4)

Then the MS can be expressed in the first order of ε
as the Hooke’s law,

σM = Kε, (5)

where K =
∑

m

[

(

~R0
m · ∂

∂ ~Rm

)2

ER

]

~R0
m

is the Bulk mod-

ulus.
Next, we derive the QES induced by electronic exci-

tation and perturbation without applying lattice strain
(εij = 0). Consider a variation of electron density

from n0(~r0) the ground-state density at ~r0 and { ~R0
m}

as n∗(~r0) = n0(~r0) + δn(~r0) . (Below, for convenience,
we will neglect the superscript 0 for ~r0.) The differentials
of energy functionals are

F [n∗(~r)] = F [n0(~r)] +

∫

V

(

δF [n(~r)]

δn(~r)

)

n0

δn(~r)d~r, (6)

The stress tensor is

σQE
ij =

1

V

dE[n(~r), { ~Rm}]

dεij
|n∗,εij=0

=
1

V

{
∫

V

[

∂µ

∂εij
δn(~r) + µ

∂(δn(~r))

∂εij

]

d~r

}

n0,εij=0

(7)

Where µ = ∂
′

n(Ee + Eext) is the electron chemical po-
tential. To arrive at Eq. (7), we used the condition
that the strain-free ground-state solid is stress free, i.e.,
(

dE
dεij

)

n0,εij=0
= 0 . It can be shown that the second term

in Eq. (7) vanishes because chemical potential remains
uniform and the number of electrons is independent of
strain, so we have the expression of QES as

σQE
ij =

1

V

[
∫

V

∂µ

∂εij
δn(~r)d~r

]

n0,εij=0

(8)

In a homogeneous crystalline solid, to a good approxima-
tion, the electron deformation potential Ξ = ∂µ/∂εij is
uniform as the electron density remains uniform before
and after strain is applied. Then, the expression of QES
can be simplified as

σQE = Ξ∆n (9)

Equation (9) can be viewed as a quantum analog of Eq.
(5), with σQE , Ξ and ∆n playing the role of σM , K and
ε, respectively. However, Eq. (8) must be used if Ξ is not
uniform in a heterogeneous system. For example, in thin
films (hetero-junctions) when strain is applied, charge
will be redistributed in the surface (interface) regions due
to the nonuniform Ξ.
We emphasize that the MS has its electronic origin; it

requires a quantum mechanical derivation as done exten-
sively before [12] because strain changes the ground-state
electron density from n0(~r0) to n(~r), whose contribution
has been termed as “quantum (mechanical) stress” or
“electronic stress”. Yet the net outcome of MS follows
classical Hooke’s law, depending explicitly only on atomic
coordinates. In other words, the effects of the ground-
state electronic structure can be cast into the atomic and
lattice size effect, having a classical manifestation of MS.
It is for this reason that the MS can be modeled by em-
pirical interatomic potential involving explicitly only the
atomic degrees of freedom. In contrast, the QES we in-
troduce here has a pure electronic origin involving explic-
itly the variation of electronic degrees of freedom [δn(~r)]
that cannot be cast into the atomic or lattice size effect.
Consequently, the QES must be described solely by the
quantum mechanics of the perturbation of electronic de-
gree of freedom.
Formally, the MS is derived “quantum mechanically”

by atomic coordinate transformation ~Rm = (1+{εij})~R
0
m

[12]; while the QES is derived by electron density vari-
ation n∗(~r0) = n0(~r0) + δn(~r0) as shown above. Equiv-
alently, we may view the QES as the difference between
the quantum MS at the excited/perturbed electron den-
sity n∗ and that at the ground-state density n0. This al-
lows us to practically calculate the QES by applying the
original Nielsen-Martin formalism but at n∗ instead of n.
This gives rise to a finite value of QES even in the absence
of external strain (Note that the MS at the ground state
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FIG. 2: (Color online) The QES induced by electrons (trian-
gles) and holes(circles) as a function of carrier density in (a)
Al, (b) Si, (c) GaAs, and (d) ZrO2. Solid lines are linear fits
to the data, and the dashed lines are extensions of the solid
lines to indicate different slopes for electrons from holes.

vanishes at zero strain.). Consequently, the QES under-
lies a range of stress phenomena induced purely by elec-
tronic excitation and perturbation, which are physically
different from mechanical deformation induced by strain.
Below, using first-principles DFT stress calculations[13],
we quantify the magnitude and reveal the nature of QES
in two distinct physical manifestations.

QES induced by charge carrier. We first demonstrate
the QES for the case of a homogeneous system where
Eq. (9) can be applied, in the form of bulk stress when
an electron is added to or removed from a solid lattice,
such as in the case of semiconductor doping or photo-
excited charge carriers in solids. We have calculated the
QES induced by adding electrons and/or holes to a fi-
nite lattice of Al (metal), Si (elemental semiconductor),
GaAs (compound semiconductor) and ZrO2 (insulator),
and graphite (hexagonal lattice). Figure 2 shows the cal-
culated σQE as a function of ∆n for Al, Si, GaAs and
ZrO2, which shows an almost perfect linear dependence
for all the cases, in excellent agreement with Eq. (9). In
plotting Fig. 2, we have used carrier density ranging from
0 to 6% of the valence electrons, within the typical den-
sity variation (up to 10% of the valence electrons) seen
in pulse laser experiments but higher than that in doped
semiconductors. In general, electrons induce compressive
QES (negative by convention); while holes induces tensile
QES. In plotting Fig. 2, the QES values are taken from
the diagonal terms of stress tensor along principal axes,
since stress is isotropic in a cubic lattice. More generally,
electrons or holes may induce anisotropic stress, such as
in a hexagonal lattice of graphite (see Fig. S1) [13].

According to Eq. (9), the slope of σQE vs. ∆n equals
to the deformation potential, Ξ. For a metal, Ξ = ∂EF

∂ε

is the same for electron and hole because of the electron-
hole (e-h) symmetry in the metal, as seen for Al in Fig.
2a, and we found ΞAl = −10.49eV . For a semiconduc-

tor or insulator, however, the deformation potential for
electron (Ξe = ∂ECBM

∂ε
, CBM stands for conduction band

minimum) is different from that for hole (Ξh = ∂EV BM

∂ε
,

VBM stands for valence band maximum) because of
the e-h asymmetry, as seen for Si, GaAs and ZrO2 in
Fig. 2. We obtained that Ξe

Si = −8.65, Ξh
Si = −9.51;

Ξe
GaAs = −9.77, Ξh

GaAs = −7.33; Ξe
ZrO2

= −12.36,

Ξh
ZrO2

= −8.87, which are in good agreement with pre-
vious results [14]. In general, the larger the band gap,
the larger the e-h asymmetry and hence the larger the
difference between Ξe and Ξh.
We note that conventionally, the deformation poten-

tial is derived by calculating the valence and conduction
band edge positions as a function of strain, which can be
difficult for DFT methods because of the arbitrariness in
the absolute value of band energy. Here, our QES calcu-
lation provides an efficient and effective method to derive
the deformation potential without the need of calculating
band structure.
QES induced by quantum confinement. We next

demonstrate the QES for the case of a heterogeneous
system where Eq. (8) must be applied, in the form of
surface stress of nanostructures. We note that the stress
effect originated from quantum confinement has been rec-
ognized before in the form of bulk strain of nanostruc-
tures treated by envelope function approach [15] and in
the form of edge stress of graphene nanoribbons calcu-
lated from DFT method [16]. Here, we present it as
one example illustration for the general concept of QES.
Specifically, we will show it in the form of surface QES
of nanofilms to distinguish it from the conventional me-
chanical surface stress.
All the crystalline solid surfaces have a non-zero in-

trinsic mechanical surface stress with a well-defined
magnitude[1, 17], a characteristic surface property of a
given film structure. However, if the thickness of a film is

FIG. 3: (Color online) The calculated surface energy and sur-
face stress of Pb(100) film as a function of film thickness,
demonstrating the surface QES in metal nanofilms induced
by quantum confinement.
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reduced to nanoscale comparable to electron Fermi wave-
length, quantum confinement becomes prominent giving
rise to formation of discrete quantum well states, known
as the quantum size effect (QSE) [18, 19]. The QSE
has been shown to modify surface energy [20]. Here, we
demonstrate that QSE will also modify surface stress,
as a distinct manifestation of QES induced by quantum
confinement [15, 16].
Figure 3 shows the calculated surface energy (γ) and

surface stress (σ) as a function of Pb(100) film thickness
(d). γ displays an oscillatory dependence on d, as known
before [20]. What’s new is that σ displays also an os-
cillatory dependence on d. The thickness dependence of
surface QES can be understood from the thickness de-
pendence of the quantum well states formed in the thin
film, which modulates the thin film deformation potential
(Ξ) and surface charge density (∆n) as a function of the
film thickness. Because both Ξ and ∆n are nonuniform
in thin film, the simplified expression of Eq. (9) cannot
be used (or there would be no QES since ∆N = 0). The
results in Fig. 3 are the integrated results of Eq. (8)
for each film thickness. Empirically, we may divide the
surface energy into mechanical and quantum electronic
contributions as γ = γM + γQE(d). Then, by definition,
we express surface stress as

σ =
1

A

dγ

dε
=

1

A

dγM

dε
+

1

A

dγQE

dε
= σM + σQE(d), (10)

where A is surface area, which is also divided into
mechanical (σM ) and quantum electronic contribution
(σQE). γM and σM represent, respectively, the me-
chanical surface energy (bond breaking energy) and sur-
face stress (bond deformation energy) of a macroscopic
thick film independent of film thickness; γQE and σQE

represent, respectively, the quantum surface energy and
surface stress, arising from quantum confinement in a
nanoscale thin film, as a function of film thickness d. As
the film thickness increases, γQE and σQE will eventually
diminish and the system resumes the classical behavior,
as shown in Fig. 3.
Implications of QES. We have shown that the DFT

calculation of QES provides an effective method for de-
riving deformation potential without the need of calcu-
lating band structure, which circumvents the difficulties
encountered by previous methods as well as saves com-
putational time. Physically, the QES induced by charge
carriers will help us to better understand the physical
nature of semiconductor doping in terms of the dopant-
induced lattice stress, by differentiating the QES induced
by electrons and holes from the MS induced by size differ-
ence between dopant and host atoms [21]. In general, it
is easier to dope an element whose QES and MS compen-
sate each other, i.e, small n-type dopants or large p-type
dopants, which induce smaller overall amount of stress.
One indirect experimental evidence of QES-related

physical phenomenon is the pulse laser induced struc-

tural phase transition, such as the graphite-to-diamond
transition [22, 23]. In a pulse lasing experiment, a high
density of charge carriers (electrons, holes and excitons)
is photo-excited in a small volume for a very short time.
We argue that such charge carriers exert a large QES to
the local lattice, causing effectively a “pressure-induced”
structural phase transition. To support our point of view,
we calculated the QES exerted by the photo-excited car-
riers (holes in the valence bands plus “free” electrons)
to an ABC-stack or AB-stack graphite lattice [13]. The
QES is found to be tensile and highly anisotropic with
the largest component along the z-axis and all the com-
ponents increase approximately linearly with carrier den-
sity (Fig. S1 for the ABS-stack graphite). This is because
the QES is dominated by the contribution from holes in
the valence band of pz orbital, as indicated in Fig. 4b.
The magnitude of the QES induced by a single hole in the
6-atom cell is as high as 20-30 GPa (Fig. S2), which indi-
cates that the pulse laser can induce a huge “local” stress
(pressure) in the graphite lattice, larger than the criti-
cal pressure needed for the graphite-to-diamond transi-
tions [24]. Furthermore, we relaxed the graphite struc-
ture under the QES exerted by the charge carrier, we
directly observed the lattice transformation of graphite
into cubic diamond as the QES is gradually decreased
upon structural optimization (Fig. s2) [13]. These re-
sults shed new lights on the understanding of the pulse
laser induced graphite-to-diamond transition, and more
generally phase transitions induced by radiation of ener-
getic particles[25].
Furthermore, we propose an experiment to directly ob-

serve and measure QES, as illustrated in Fig. 4. One can
grow and release a freestanding bilayer strip of cantilever
[26], with two lattice-matched semiconductor films but
of different band gaps, such as GaAs/AlGa bilayer film.
As a photon, whose energy is chosen to be larger than
the GaAs gap (1.42 eV) but smaller than the AlAs gap
(2.17 eV), comes in it will be only adsorbed by the GaAs
layer inducing a QES within it. Consequently, the pho-
toexcitation induced QES in GaAs causes the bilayer to
bend and the measurement of bending strain gives a di-
rect measure of the sign and magnitude of QES.
In conclusion, we introduce the concept of QES un-

hv

hv > Eg
GaAs

hv < Eg
AlAs

 
QE  

QE

FIG. 4: (Color online) Schematic illustration of an experi-
mental setup to direct measure the QES induced by the pho-
toexcited charge carrier in a semiconductor bilayer cantilever.
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derlying the lattice stress induced by electronic excita-
tion/perturnation without external strain as opposed to
the conventional strain-induced MS. We derive and con-
firm by DFT calculation “the law of QES”, as a quantum
analog of Hooke’s law of MS. We also propose an experi-
ment to directly measure the charge carrier-induced QES.
We expect the QES to manifest broadly in physical phe-
nomena and technological applications that couple elec-
tronic structure with lattice stress, such as semiconduc-
tor doping and gating effects, quantum confinement in
nanostructures, particle irradiation induced phase tran-
sitions, electroelastic and magnetoelastic effects, and bio-
logical cell deformation due to charging and polarization.
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