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We numerically study the problem of two fermions in a three dimensional optical lattice interacting
via a zero-range Feshbach resonance, and display the dispersions of the bound states as a two-particle
band structure with unique features compared to typical single-particle band structures. We show
that the exact two-particle solutions of a projected Hamiltonian may be used to define an effective
two-channel, few-band model for the low energy, low density physics of many fermions at arbitrary
s-wave scattering length. Our method applies to resonances of any width, and can be adapted to
multichannel situations or higher-ℓ pairing. In strong contrast to usual Hubbard physics, we find
that pair hopping is significantly altered by strong interactions and the presence of the lattice, and
the lattice induces multiple molecular bound states.

The crossover of a system of attractive two-component
fermions from a condensate of loosely bound Cooper pairs
to a condensate of tightly bound bosonic molecules has
a long history [1], and appears in many contexts, in-
cluding high-temperature superconductivity [2] and ul-
tracold atoms [3]. Furthermore, near the crossover such
a system enters the unitary regime where the scattering
length is larger than any other length scale in the prob-
lem. The physics of this regime is relevant to many dif-
ferent fields, bringing together quantum chromodynam-
ics, holographic duality, and ultracold quantum gases [4].
Theoretical study of the unitary regime is generally dif-
ficult due to the absence of any small parameter.
Theoretical analysis becomes even more difficult in a

lattice, as the center of mass, relative, and internal de-
grees of freedom become coupled, leading to composite
particles whose properties depend on their center of mass
motion [5]. Furthermore, strong interactions require the
inclusion of a large number of Bloch bands for an accu-
rate description, and this cannot be handled efficiently by
modern analytical or numerical many-body techniques.
In addition to general theoretical interest in how fermions
pair to form bosons in a discrete lattice setting, the study
of pairing in lattices is of significant practical importance.
For example, an accurate, systematically correctable, and
computationally feasible many-body Hamiltonian is nec-
essary for calibrating fermionic quantum simulators as
has been done in the bosonic case [6].
In this Letter, we describe a general method to derive

an effective few-band low-energy Hamiltonian for Fesh-
bach interacting fermions in a lattice from the numerical
solution of the two-body problem. We call this Hamil-
tonian the Fermi Resonance Hamiltonian (FRH). This
method applies to Feshbach resonances of any width and
for arbitrary scattering length, and all parameters ap-
pearing in the effective model can be computed micro-
scopically from the properties of the two-body solution.
The difference between the bare model and the FRH is
sketched in Fig. 1.
The simplest approach to describing Feshbach inter-

acting fermions is to replace the interaction with a
pseudo-potential chosen to reproduce the correct scat-
tering length. When restricted to a single Bloch band,
this leads to the popular Hubbard model [7] which has
been shown to break down for scattering lengths which
are far from being resonant, even when the parameters
appearing in the model are determined self-consistently
from few-body physics [8]. Our work instead defines a
“dressed” closed channel whose properties are chosen to
reproduce both the scattering and bound states correctly.
In contrast to past two-channel approaches [9], we con-
struct the dressed fields using the full lattice solution and
not an approximation where the center of mass and rela-
tive coordinates separate, such as the harmonic oscillator
potential. The use of any separable approximation leads
to qualitative errors, such as the lack of tunneling along
non-principal axes, and quantitative errors, such as the
underestimation of principal axis tunneling matrix ele-
ments, often by an order of magnitude.
Exact solution for two particles. The basic concept of

a two-channel model is for an open channel to describe
scattering between two atoms and a separate closed chan-
nel to describe bound pairs. While each channel repre-
sents a single scattering or bound state in the continuum,
in the lattice it also acquires a band index. Because of
an inter-channel coupling, the actual molecule is a super-
position of bands from both channels.
To treat this problem, we begin with the nonlinear

eigenvalue problem developed by Büchler [8] for EK, the
bound state energy at total quasimomentum K, and RK

s ,
the coefficients of the closed channel portion of the wave-
function. As shown in [8, 10], for the bound states of two
fermions in an optical lattice interacting via a zero-range
Feshbach resonance in a two-channel model:

[
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sK
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Here ν is the renormalized detuning between the open



2

and closed channels, g is the inter-channel coupling, a
is the lattice spacing, v0 is the volume of the Brillouin
zone (BZ), and the bars in Eqs. (2-3) denote quantities
computed in the absence of an optical lattice. We as-
sume that spin-spin interactions which change the or-
bital angular momentum are negligible so that the scat-
tering is purely s-wave. The optical lattice is assumed
to be simple cubic with lattice spacing a and potential
V (x) = V

∑

j∈{x,y,z} sin
2 (πj/a). The overlaps of the di-

mensionless coupling between the open and closed chan-
nels are

hnmsK (q)√
N3a3

=
∫

dxdy [ψnq (x)ψm,K−q (y)]
⋆
α (r)φsK (R) ,

where N3 is the number of unit cells, the ψnq (x) are
Bloch functions with energies Enq for particles with mass
m spanning the open channel and φsK (z) are Bloch
functions with energies EM

sK for particles with mass 2m
in a lattice potential 2V spanning the closed channel.
We have also defined relative r ≡ x − y and center of
mass 2R = x + y coordinates, and α (r) is a regular-
ization of the inter-channel coupling. The sum of the
noninteracting energies of the open channel is denoted
EK

nm (q) = Enq + Em,K−q and the zero of energy is
E0

11 (0). Here and throughout the rest of this work n

and m are band indices for the open channel, s and t are
band indices for the closed channel, q is a single-particle
quasimomentum, and K is the total quasimomentum.
While Eqs. (1)-(3) apply to resonances of any width,

we focus on the experimentally relevant limit of a broad
resonance. Narrow resonances are treated in the sup-
plementary material [10]. A broad resonance in the
few-body sense is the limit of effective range much
smaller than the lattice spacing, rB ≪ a, and so we
can take the limits g/ERa

3/2 = 4
√

a/rBπ3 → ∞,
ν/ER → ∞, as/a = −πg2/8a3ERν = const., to ob-
tain (8asER/πa)χ

K (EK)RK − RK = 0, where ER =
~
2π2/2ma2 is the recoil energy and as is the s-wave scat-

tering length. How can we then obtain the dispersion re-
lation EK for fixed as, ν, etc.? First, fix the energy eigen-
value EK and solve the resulting linear eigenproblem for
1/as. This provides exact eigentuples

(

EK, as,R
K
)

of
the nonlinear eigenproblem, though it may not be the as
we seek. Second, fix as and use the exact tuple nearest
this value as initialization for a Newton-Raphson itera-
tion [11]. This two-stage approach converges to a relative
accuracy of 0.01% in a few tens of iterations [12].
Because the eigenequation Eq. (1) is invariant under

translation by any Bravais lattice vector, its eigenvalues
can be classified according to the total quasimomentum
and shown as a two-particle band structure. A complete
classification of the solutions is given in the supplemen-
tal material [10]. In Fig. 2 we show only the energy of
the low-energy bound states with completely even par-
ity under inversion as a function of K for several as/a
in a lattice with V/ER = 12. We see the appearance of

several bound states for a fixed s-wave scattering length,
in contrast to the continuum. These additional bound
states arise from the coupling of quasimomenta modulo
a reciprocal lattice vector induced by the reduced transla-
tional symmetry. One salient feature is the emergence of
universality, which is the independence of the dispersion
from the sign of as when |as/a| becomes large. For non-
resonant and negative as/a, picturing the bound states
as Fermi pairs with twice the mass and twice the polar-
izability captures the relative spacings between energy
levels quite accurately, but generally overestimates the
effective mass of the bound states. This effective mass
difference is an indication of the coupling between the
center of mass and relative motion which leads to impor-
tant properties of the FRH.
Fermi Resonance Hamiltonian. A promising route to

describing Feshbach interacting ultracold gases is by a
lattice projection of a two-channel model in which the
closed channel appears explicitly in the Hamiltonian.
However, for a typical broad resonance such models re-
quire a large number of both open and closed channel
bands to solve accurately, and so cannot be treated effi-
ciently. Because the modern context of this problem in-
volves extremely low temperatures and densities, we can
look for an effective model valid in these limits which still
reproduces the correct physics. This is done by replacing
the model containing couplings between all open channel
bands with all closed channel bands with a model describ-
ing an effective resonance between the lowest open chan-
nel band with a suitable set of effective closed channel
bands whose properties are set by the two-body solution
for low densities. This process is displayed schematically
in Fig. 1. The purpose of this section is to derive such
an effective Hamiltonian using our two-particle theory.
We begin by separating our two-particle Hamiltonian

using projectors L into the lowest open channel band and
D = 1 − L into all excited open channel bands and all
closed channel bands. A similar approach was taken in
Ref. [13] for the 1D case. An analysis analogous to that
leading to Eqs. (1)-(2) gives a nonlinear eigenequation
for the closed channel components of D|ψ〉 as

[

EK − ν − EM
sK

]

RK
s = g2

a3

∑

tχ̃
K
st (EK)RK

t , (4)

χ̃K
st (EK) ≡ ∑′

mn;q
hnm

sK
(q)hnm

tK

⋆(q)
EK−EK

nm
(q)+iη − χ̄K

st , (5)

where the prime on the sum indicates (m,n) 6= (1,1).
Here χ̃ differs from χ in Eqs. (1)-(2) in that the summa-
tion excludes the lowest band. We emphasize that the
renormalization χ̄ includes all bands and so the detuning
and scattering length used in this projected model are
those of the full (non-projected) and properly renormal-
ized two-body problem. We call the eigenstates of this
projected system dressed molecules. Here we label dis-
tinct eigenstates of Eq. (4) by the parameter α. These so-
lutions share many features of the full solution presented
above. However, the divergence of the s-wave scatter-
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ing length for the lowest energy completely even parity
state occurs near EK = 0, indicating that scattering res-
onances in the lowest open channel band are generated
by coupling to this state.
We now assume that, at low temperatures and low

densities, two particles which are separated by a distance
large compared to the effective range of the potential
will remain in the lowest band to minimize their energy.
When two particles come together they interact strongly
and populate many of the excited open channel bands as
well as the closed channel bands. Because it is rare for
more than two particles to come together, the particular
populations of the excited states are fixed by the two-
particle solution. The dressed molecules encapsulate the
short distance, high energy physics and couple it to the
long wavelength, low energy physics of the lowest band
fermions through the Feshbach coupling. The point of
connection between the few- and many-body physics is
the two-particle scattering length (equivalently g and ν
for narrow resonances), which appears as a parameter in
the equation Eq. (4) defining the dressed molecules.
The FRH is

Ĥeff = −tf
∑

σ∈{↑,↓}

∑

〈i,j〉â
†
iσâjσ + E0

∑

σ∈{↑,↓}

∑

in̂
(f)
iσ

−∑

α∈M

∑

i,jt
α
i,j d̂

†
i,αd̂j,α +

∑

α∈Mν̄α
∑

in̂
(b)
iα

+
∑

α∈M

∑

ijkg
α
i−k,k−j

[

d̂†i,αâj,↑âk,↓ + h.c.
]

, (6)

where â†iσ creates a particle with spin σ in the low-
est open channel band Wannier state centered at lattice
site i, wi (x); d̂

†
i,α creates a particle in the αth dressed

molecule Wannier state centered at site i, Wi,α (x,y);

n̂
(f)
iσ is the number operator for fermions in the lowest

Bloch band; and n̂
(b)
iα is the number operator for the αth

dressed molecule state. The set of dressed molecules M
which are included dynamically can be determined on
energetic and symmetry grounds from the two-particle
solution. At low energies, only the completely even par-
ity dressed molecule in the lowest sheet [10] is relevant
to the set M, as all others either have vanishing on-site
couplings from parity considerations or are very far off-
resonance. In order, the terms in Eq. (6) represent tun-
neling of atoms in the lowest Bloch band between neigh-
boring lattice sites i and j; the energy E0 =

∑

qE1,q/N
3

of a fermion in the lowest band with respect to the zero of
energy; tunneling of the dressed molecular center of mass
between two lattice sites i and j, not necessarily nearest
neighbors; detunings of the dressed molecules from the
lowest band two-particle scattering continuum; and reso-
nant coupling between the lowest band fermions at sites
j and k in different internal states and a dressed molecule
at site i. The FRH is a two-channel resonance model, be-
tween unpaired fermions in the lowest band, and dressed
molecules nearby in energy.
We now describe how to calculate the Hubbard pa-

rameters appearing in Eq. (6). The first term is well-

known from single-band Hubbard models [14] and we
do not discuss it here. Due to the fact that the solu-
tions of the projected nonlinear eigenequation Eq. (4) are
also eigenstates of the total quasimomentum, the second
and third terms may be written as ν̄α =

∫

dKEα
K/v0

and tαi,j = −
∫

dKeiK·(Ri−Rj)Eα
K/v0. Because the band

structure is not separable, EK 6=
∑

i={x,y,z}EKi
, dressed

molecules can tunnel along directions which are not the
principal axes of the lattice. This is in stark contrast to
single-particle tunneling in Bravais lattices which always
occurs along the principal axes. Thus diagonal hopping

is a key feature neglected in previous approaches. In
Fig. (3)(a) we show that diagonal hopping is often of the
same order of magnitude as the tunneling of open chan-
nel fermions in the lowest band. The signs and mag-
nitudes of the tunnelings and particularly the dressed-
molecule atom couplings are crucially affected by the
parities of the dressed molecular Wannier functions. We
stress that only a full lattice solution can reproduce these
important properties of the Hubbard parameters; the fre-
quently used harmonic oscillator approximation will fail
even qualitatively to do so.
The remaining Hubbard parameter is the dressed

molecule-atom coupling, which becomes in the limit of
a broad resonance g/ERa

3/2 → ∞

gαi−k,k−j =
∑

s

∫

dK
v0
RK

αsgαK
∫

dq
v0
ei(K·Rik+q·Rkj)h11sK(q)

(7)

where the renormalized coupling is gαK =
ER/

√

−RK
α · (∂χ̃K/∂Eα

K) ·RK
α and Rij = Ri − Rj .

We emphasize that gαj,k has only implicit dependence

on the divergent parameter g/ERa
3/2 through gαK and

so remains finite, see Fig. 3(b). As gαK ≪ g/a3/2, the
transformation to the FRH has the effect of narrowing
the resonance. In Fig. 3(b) we also see that the on-site
coupling g000,000 is the dominant energy scale of the
problem for large as/a, and that off-site couplings can
also be large compared to other Hubbard parameters
such as the open channel tunneling. Atoms which do not
lie along a principal axis can pair to form a molecule,
but this effect is much weaker than diagonal tunneling
for the completely even parity dressed molecule.

In the derivation of the FRH we use only the bound
states of the projected problem and neglect scattering
states in higher bands. This captures the scattering
states in the lowest band and nearby bound states, but
will fail to capture the physics at higher two-particle rel-
ative energy where scattering states in higher bands can
play a role. In order to accommodate these scattering
states, one can project out higher bands from χ as was
done for the lowest band, and then include these bands
dynamically in the many-body Hamiltonian with renor-
malized couplings. In this way, the energetic domain of
application of the FRH can be extended arbitrarily at the
expense of more dynamical fields. Within the confines of
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the two-channel model and the constraint of low ener-
gies, the FRH is an accurate representation of the many-
body Hamiltonian. However, intrinsic three-body pro-
cesses which are not captured by the two-channel model
play a role at higher density and lead to corrections to
the FRH. A discussion of these three-body processes is
outside the scope of this paper.
In summary, we have studied the bound state proper-

ties of two Feshbach interacting fermions in an optical lat-
tice at a range of scattering lengths and quasimomenta.
The bound states of a projected Hamiltonian were used
to identify a numerically tractable, efficient Hamiltonian
for a low density many-body collection of lattice fermions
at arbitrary scattering length and low energies, the Fermi
Resonance Hamiltonian. Our results provide the appro-
priate starting point for future investigations of strongly
interacting lattice fermions.
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supported by the Alexander von Humboldt Foundation,
AFOSR, NSF, and GECO.
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[8] H. P. Büchler, Phys. Rev. Lett. 104, 090402 (2010); H. P.
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Figures

FIG. 1: (Color online) Schematic of the FRH transformation.
(a) In a broad Feshbach resonance, all two-particle scattering
continua (gray shading) are strongly coupled to bare molecu-
lar bands (solid lines). Thus all scattering continua are virtu-
ally strongly coupled. (b) By correctly dressing the molecular
bands, one obtains a single scattering continuum (gray) plus
well-separated dressed molecular bands (green), with much
simpler couplings. This is our efficient, numerically tractable,
FRH.

FIG. 2: (Color online) Exact two-particle band structures for

various as in a strong optical lattice. The bound state energies
for as/a = −5 (purple boxes), −0.1 (red pluses), 0.1 (green
crosses), and 5 (blue asterisks) as a function of the total quasi-
momentum K along a path connecting the high-symmetry
points in the irreducible BZ Γ = (0, 0, 0), X = (−π/a, 0, 0),
M = (−π/a,−π/a, 0), R = (−π/a,−π/a,−π/a) for a lattice
with V/ER = 12. The near-resonant points as/a = ±5 lie
nearly on top of one another, demonstrating universality.

FIG. 3: (Color online) Hubbard parameters for the FRH. (a)
The detunings and tunnelings of the completely even parity
dressed molecule in the lowest sheet as a function of as/a. The
detuning is negative for as < 0 and positive otherwise. The
solid black horizontal line is the tunneling of a single open
channel fermion in the lowest band. The nearest neighbor
dressed molecular tunneling is nearly two orders of magni-
tude larger than the open channel tunneling near resonance.
(b) The effective atom-dressed molecule couplings of the com-
pletely even parity dressed molecule in the lowest sheet as a
function of as/a. Schematics of the spatial dependence of the
various coupling processes are shown in the boxes.



K K

Open Channel Closed Channel

K

a) b). . .

Open

Channel

Dressed
molecules



Γ X M R Γ

E
K

/E
R



 0.001

 0.01

 0.1

 1

 10

-4 -2  0  2  4
 0.01

 0.1

 1

 10

-4 -2  0  2  4
as/aas/a

|ν̄|/ER

|t000,100|/ER

t000,200/ER
|t000,110|/ER

|t000,111|/ER

|g000,000|/ER

|g100,000|/ER
|g200,000|/ER

|g000,100|/ER

↑↓
g000,000

↑↓
g100,000

↑↓
g200,000

↑ ↓
g000,100

(a) (b)


