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Systems of strongly interacting atoms and photons, that can be realized wiring up individual
cavity QED systems into lattices, are perceived as a new platform for quantum simulation. While
sharing important properties with other systems of interacting quantum particles here we argue that
the nature of light-matter interaction gives rise to unique features with no analogs in condensed
matter or atomic physics setups. By discussing the physics of a lattice model of delocalized photons
coupled locally with two-level systems through the elementary light-matter interaction described by
the Rabi model, we argue that the inclusion of counter rotating terms, so far neglected, is crucial
to stabilize finite-density quantum phases of correlated photons out of the vacuum, with no need
for an artificially engineered chemical potential. We show that the competition between photon
delocalization and Rabi non-linearity drives the system across a novel Z2 parity symmetry-breaking
quantum criticality between two gapped phases which shares similarities with the Dicke transition
of quantum optics and the Ising critical point of quantum magnetism. We discuss the phase diagram
as well as the low-energy excitation spectrum and present analytic estimates for critical quantities.

PACS numbers: 42.50 -o, 42.50 Pq, 73.43.Nq, 05.30.Rt

Introduction - Interaction between light and matter is
one of the most basic processes in nature and represents
a cornerstone in our understanding of a broad range of
physical phenomena. In the study of strongly correlated
systems and collective phenomena, light has traditionally
assumed the role of a spectroscopic probe. The increas-
ing level of control over light-matter interactions with
atomic and solid-state systems [1–3] has brought forth a
new class of quantum many body systems where light and
matter play equally important roles in emergent phenom-
ena: photon lattices [4–15]. The basic building block of
such systems is the elementary Cavity QED (CQED) sys-
tem formed by a two-level system (TLS) interacting with
a single mode of an electromagnetic resonator. When
CQED systems are coupled to form a lattice, the inter-
play between photon blockade [17–19] and inter-cavity
photon tunnelling leads to phenomenology akin to those
of Hubbard models of massive bosons as realized e.g. by
ultracold atoms in optical lattices [20]. The possibility
of quantum phase transitions of light between Mott-like
insulating and superfluid phases has stimulated a great
deal of discussion recently [4–9, 11–14]. The excitement
about these systems stems from their potential as dis-
sipative quantum simulators that provide full access to
individual sites through continuous weak measurements
[16].

While sharing important features with conventional
condensed matter or atomic physics setups, systems of
strongly correlated photons have their own unique prop-
erties that ultimately derive from the nature of the fun-
damental light-matter interaction. As photons can dis-
appear by interacting with the matter field, their num-
ber is not conserved but rather fixed by the condition

of thermal equilibrium. To describe this situation for a
photon gas in equilibrium with either photonic or dipo-
lar bath – such as in a blackbody – one says that pho-
tons have zero chemical potential [21]. From the point
of view of bosonic Hubbard models this has rather dra-
matic consequences, as one would then require an exter-
nal non-equilibrium drive in order to engineer non-trivial
quantum many body states other than the vacuum [22].
For a Lattice CQED system however, as we will show
in this Letter, this is remarkably not so. If the vacuum
Rabi frequency becomes comparable to the TLS transi-
tion frequency, a regime referred to as the “ultra-strong
coupling regime”, the lattice can spontaneously gener-
ate photons out of vacuum. A non-trivial ground state
is then achieved in the ultra-strong coupling limit. By
considering the original light-matter interaction Hamilto-
nian described by the Rabi model, we show that a lattice
of CQED systems displays a novel Z2 parity-breaking
quantum phase transition where the two-level systems
polarize to generate a ferroelectrically ordered state and
the photons acquire a non vanishing expectation value
due to coherent hopping. This novel quantum criticality,
described by a delocalized super-radiant quantum crit-
ical point, shares some similarity with the Dicke phase
transition of quantum optics and turns out to be in the
universality class of the Ising model.
Single Resonator - The elementary light-matter in-

teraction between a photonic mode of a resonator and a
TLS is described by the Rabi model [1]

HR = ωr a
† a+ ωqσ

+ σ− + g xσx (1)

where ωr is the frequency of the resonator, ωq the qubit
transition frequency, g the light-matter coupling strength
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and x = a + a†. In addition, depending on the spe-
cific context, an extra term should be added to Eq. (1)
where the field appears quadratically, HA2 = D (a+a†)2.
We will discuss its implications at the end of the paper
and first address the physics of the Rabi model (1) and
its lattice extension. When the coupling g is sufficiently
smaller than the frequencies ωr, ωq one can safely neglect
processes where simultaneously atomic and photonic ex-
citations are created, described by the counter-rotating
terms a† σ+ + σ− a. In this so called rotating-wave ap-
proximation the Hamiltonian (1) reduces to the Jaynes-
Cumming (JC) model, HJC = ωr a

† a + ωqσ
+ σ− +

g
(

a† σ− + σ+ a
)

used widely in discussions of CQED
physics. While appropriate in many relevant cases, re-
cent implementations of circuit QED [23, 24] achieved
coupling strengths g where the counter-rotating terms
begin to show significant deviations from the expecta-
tions of the JC model [1, 25–31]. This is the so called
“ultra-strong coupling” regime of parameters g ∼ ωr.
Although the physics of the Rabi model has been widely
studied and well-understood [32–34] it is attracting re-
newed attention recently [35, 36]. Here we will examine
the Rabi-Hubbard model as realized e.g. by a lattice
of circuit QED cavities where each node is described by
HR. As we discuss below, this system forms a viable plat-
form for studying non-trivial strongly correlated phases
of light. Experimental efforts to fabricate on-chip pho-
tonic lattices of circuit QED systems are currently un-
derway [37]. Before we introduce the lattice, we consider
the generalized Rabi model

HgR[a, a
†] = ωr a

† a+ ωqσ
+ σ− + g

(

a† σ− + σ+ a
)

+

+g′
(

a† σ+ + σ− a
)

(2)

We would like to stress that we introduce this model
to explore the role of counter-rotating terms in a con-
trolled fashion. This model interpolates between the JC
Hamiltonian for g′ = 0 and the standard Rabi Hamil-
tonian for g′ = g. In the following we will restrict our-
selves to the resonant case ωr = ωq = ω0. For g′ = 0
i.e. in the JC limit, the above model conserves the total
number of excitations, N = a† a + σ+σ−. The result-
ing continuous U(1) symmetry allows an exact analytic
solution of HgR in terms of dressed states of photons
and TLS excitations, the polaritons. The ground-state
shows an interesting evolution upon increasing the cou-
pling g/ω0, with an infinite series of level crossings for
gc(n) = ω0

(√
n+ 1 +

√
n
)

where the number of excita-
tions increases from n to n+1, resulting in a characteristic
staircase structure (see Fig. 1).
For an arbitrarily small g′, counter-rotating terms

break the continuous U(1) symmetry down to a discrete
Z2 group associated with parity P = eiπN . Under this
unitary operator the photon field a and the TLS op-
erator σx transform respectively as P†aP = −a and
P†σxP = −σx, from which the invariance immediately
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FIG. 1: Evolution of the single site generalized Rabi Model
ground state properties upon increasing the strength of
counter-rotating terms g′/g. Top panels: number of exci-
tations and parity of the ground state as a function of g/ω0

and for different g′/g. Bottom panels: (left) decay of level
splitting ∆ in the ultra-strong coupling regime and (right)
probability of having n polaritons in the Rabi ground state
(inset) and its evolution with g′/g = 0.0, 0.25, 0.5, 0.75, 1.0.

follows, namely [P ,HgR] = 0. A direct consequence of
the parity symmetry is that, while 〈 a〉 = 〈σx〉 = 0 in
the ground state of HgR much as in the JC limit, the
photon field in the Rabi ground state is squeezed, i.e.
〈 a2n〉 6= 0. While the discrete Z2 symmetry prevent a
full closed-form solution, the model (2) in the Rabi limit
g′ = g has recently been shown to be nevertheless in-
tegrable [35]. Important features of this exact solution
that will be relevant for our discussion below are that (i)
no level crossing between states of different parities can
occur as a function of g/ω0 (note that g′ = g), which in
turn implies that the ground state of the Rabi model re-
mains an even parity state for any g/ω0, (ii) the ground
state and the first excited state are quasi-degenerate in
the deep ultra-strong coupling limit g/ω0 ≫ 1.

To get further insight into the structure of the Rabi
ground state we numerically diagonalize the Hamilto-
nian (2). In Fig. 1 (top panels) we plot the number of ex-
citations and the parity of the ground state as a function
of g/ω0 for different values of g′/g. Upon increasing the
strength of counter-rotating terms the JC plateaux are
gradually smeared out. Though the parity remains well-
defined, the evolution with g′ reveals multiple crossings
between eigenstates switching the parity of the ground
state, ultimately resulting in an even parity ground state
when g′ = g. We also plot (bottom panel, Fig. 1) the
scaled level splitting ∆/ω0 between the ground state and

the first excited state, which vanishes as ∆ ∼ e−2(g/ω0)
2
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for large g/ω in agreement with degenerate perturbation
theory. Instead, the gap to the next energy level stays of
order one (not shown) at large g/ω0. Polaritonic dressed
states are not anymore exact eigenstates for g′ 6= 0 and
turning on g′ results in a smooth broadening and shift of
the eigenstates of the generalized Rabi model when pro-
jected on the polaritonic eigenstates of the corresponding
JC model, as shown in the right panel of Fig. 1.
Lattice model of interacting atoms and photons – We

now come to the main subject of this Letter, which is
the physics of the Rabi-Hubbard model, a model of itin-
erant photons hopping between neighboring resonators
and interacting on-site with a TLS according to the local
Hamiltonian (2). The full many-body Hamiltonian for
this system reads

H = −J
∑

〈RR′〉

a†
R
aR′ +

∑

R

HgR[aR, σ
+
R
]. (3)

We stress here that, with an eye on possible future exper-
iments on a circuit QED architecture, we do not include
any chemical potential to tune the density of excitations
in the ground state. The goal here is to exploit the spon-
taneous polarization of the Rabi vacuum that emerges
when the system enters the ultra-strong coupling regime.
We start considering first the g′ = 0 JC limit and study

the phase diagram in the g−J plane [42]. In the absence
of hopping, the ground state is an exact dressed state of
polaritons. A gapped and incompressible Mott Insulating
(MI) phase of polaritons survives at finite hopping until
a critical value of J is reached. The phase boundary
Jc(g) features characteristic Mott lobes (see Fig. 3), a
legacy of the level crossings of the single site JC model
discussed above. For hopping strengths larger than Jc
the system is in a superfluid (SF) compressible phase with
gapless excitations associated to phase fluctuations of the
U(1) order parameter. It is now well-established that the
JC lattice model is in the same universality class as the
Bose-Hubbard model [8, 11–13, 38, 39]. Crucially for our
purpose here, the experimental realization of this MI-SF
quantum phase transition requires an external driving
or a suitably engineered chemical potential in order to
counter-balance photon losses into the vacuum.
We now argue that the inclusion of counter-rotating

terms in Eq. (3) has a dramatic effect on the above
physics. The roots of this can be traced back to the
single resonator limit. As discussed above, the counter-
rotating terms leave the system with a discrete Z2 sym-
metry associated to parity. Photon hopping in (3) can
trigger a spontaneous breaking of this parity symmetry
above some critical coupling Jc(g), toward a phase where
both 〈 aR〉 6= 0 and 〈σx

R
〉 6= 0. As the broken symmetry

is discrete, this quantum phase transition is fundamen-
tally different from the JC one. Indeed it can be seen as
a delocalized super-radiant quantum critical point rem-
iniscent of the multi-mode Dicke transition of quantum
optics. In order to see that a non-zero J favors ordering,

we start from the full Hamiltonian (3) and notice that
photons can be integrated out exactly in an imaginary-
time action formalism to obtain an effective model for
the TLSs only. The result of this calculation [43] re-
veal that photon mediates an effective Ising-like cou-
pling between TLS which is retarded and long-range,
Jeff
R−R′(τ) = −g2/2 〈TτxR(τ)xR′ (0)〉. The scaling with
g implies that at sufficiently large g/ω0 and for finite
J , a ferromagnetically ordered Ising phase emerges with
〈σx

R
〉 6= 0. Further insight into this emerging Z2 degree

of freedom are obtained from the single site limit. As we
discussed, at large g/ω0 the ground state and the first ex-
cited state are almost degenerate, with an exponentially
small splitting and a gap to the next level which stays of
order one. These two states |±〉 have opposite parity and
can be thought as eigenstates of an effective pseudospin
1/2 degree of freedom, Σz

R
. In addition we notice that

the photon operator aR does not couple states with same
parity. Its expression in the restricted |±〉 subspace reads
aR → β Σ+

R
+ γ Σ−

R
, where the dependence of the coeffi-

cients β, γ on the coupling g can be obtained numerically.
In the limit g/ω0 ≫ 1 one can analytically show that a
linear scaling holds β = γ ∼ g/ω0. Armed with these
results we can rewrite the Rabi-Hubbard Hamiltonian as

Heff = −
∑

〈RR′〉

JxΣxR ΣxR′ + Jy Σy
R
Σy

R′ +
∆

2

∑

R

ΣzR (4)

where the couplings Jx,y = J(γ ± β)2/2 depend on g as
shown in Fig. 2. This effective model describes a pseu-
dospin anisotropic XY model in a longitudinal magnetic
field ∆/2, which is known to display a quantum phase
transition toward a Z2 broken symmetry phase which is
in the Ising universality class for any finite anisotropy,
Jx 6= Jy [41]. The effective psuedospin description high-
lights once more the differences between the Rabi and
the JC case. Indeed here both the disordered and the or-
dered phases are gapped except right at the critical point
where the gap is expected to vanish as a power-law.

Mean Field Phase Diagram and Fluctuations - We
now use Gutzwiller mean field theory to confirm the gen-
eral picture we have drawn for the transition. By de-
coupling the hopping term in (3) we reduce the origi-
nal lattice problem to an effective single site problem,
Heff [ψ] = Hloc − ψ

(

a† + a
)

in a self-consistent field
ψ = Z J〈 a〉ψ. In addition, by expanding the energy
to second order in ψ we can get the mean field phase
boundary Jc(g), above which a parity symmetry broken
phase emerges with both 〈 aR〉 6= 0 and 〈σx

R
〉 6= 0. In

Fig. 3 we plot the mean field phase boundary in the
J, g plane for different values of g′/g from the JC to
the Rabi limit. The Mott lobes for g′ = 0 are gradu-
ally suppressed as the ratio g′/g is increased. For inter-
mediate values a residual lobe structure remains, which
reflects the level crossings already discussed in the single-
site problem. However we stress that no Mott insulator
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FIG. 2: Top panels: (Left) Scaled ferromagnetic coupling
Jx,y/J of the effective spin model as a function of g/ω0. While
Jx

∼ (g/ω0)
2 at ultra-strong coupling, the coupling along y

is vanishingly small. (Right) Mean-field order parameter for
the effective spin model. Bottom panel: Band of spin-wave
excitations above the ground-state.

exists for any finite g′. Further insight on the transition
can be gained from the effective spin Hamiltonian (4).
A linearized fluctuation analysis gives a critical coupling
Jc = ∆/ (β + γ)

2 ∼ ω3
0 e

−2(g/ω0)
2

/4g2 which correctly
matches the numerical results in the large g/ω0 regime
(see figure 3). In addition the effective Hamiltonian also
gives access to the spectrum of low-lying excitations ωk,
plotted in Fig. 2, that as expected is gapped on both sides
and vanishes in a power-law fashion at the transition,
Eg ∼ |J − Jc|1/2. The low-energy spectrum is gapless at
the critical point, with a linear dispersion ωk = c |k|.
Discussion - The physical picture we have drawn from

our analysis of the lattice Rabi model reveals a striking
feature of hybrid systems made of atoms and photons.
Due to the nature of the fundamental light-matter inter-
action, which allows non-trivial vacuum fluctuations, no
external driving forces or artificially engineered chemi-
cal potentials are in principle required to stabilize finite
density quantum phases of correlated atoms and photons.
Rather it is the coupling between matter and light that
will trigger this non-trivial vacuum polarization. An im-
portant question for a possible experimental realization
e.g. on a circuit QED platform concerns the stability of
the above picture against photon leakage that is an in-
herent feature of any quantum optical system. Physical
intuition would suggest that at least for a small coupling
to a low-temperature photonic bath the ordered phase
would be protected by the discrete nature of the Z2 sym-
metry. However an in-depth study of the phase diagram
and a full understanding of quantum criticality in the
open system limit is an important fundamental problem
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/4g2 [44]

that we leave to future investigation.

We now briefly discuss the role of the A2 term HA2 =
D (a + a†)2 in the picture that emerges from the above
discussion. Recently it has been argued that such a term,
generally assumed to be small, can become relevant in
certain cavity QED realizations of the single-mode Dicke
Model, where an ensemble of many TLSs is coupled to
a single mode of a cavity. Indeed when the coupling
D scales sufficiently fast with light matter interaction g,
D > g2/ωq, the super-radiant critical point disappears.
While this condition is realized in cavity QED setups
with real atoms coupled via electric dipole and results
in so called no-go theorems, the situation with some cir-
cuit QED implementations, where TLSs couple capaci-
tively to the resonator, is currently subject of scientific
debate [45, 46]. We note that in contrast to the single-
mode Dicke model, in our system the Z2 parity symmetry
breaking emerges from a non-trivial competition between
hopping delocalization of photons and local light-matter
interactions. As a result the critical boundary Jc(g) can
be accessed by increasing the hopping strength J , at fixed
(and even moderate) light-matter coupling. While the
inclusion of HA2 in our lattice Hamiltonian may change
quantitatively the shape of the phase boundary [43], es-
pecially in the ultrastrong coupling regime, it is rather an
issue of the specific implementation that will determine
the ideal architecture to realize the Rabi phase transi-
tion in an experimental system. Finally we note that
circuit QED implementations can be engineered where
the A2 term is irrelevant. This is the case, for example,
of flux qubits inductively-coupled to resonators [47], a
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setup that in principle [48] is ideally suited to access the
ultra-strong coupling regime and that has been recently
explored experimentally in single circuit QED units [23].
Conclusions - In this work we have explored the

physics of itinerant photons hopping between neighbor-
ing resonators of a lattice of CQED systems. We have
studied its equilibrium phase diagram as a function of the
atom-photon coupling g and shown that this system dis-
plays a novel parity symmetry breaking quantum phase
transition, belonging to the Z2 Ising universality class,
between two gapped phases. Simultaneously, the pho-
tonic degrees of freedom acquire a non-vanishing expec-
tation value, displaying a delocalized superradiant phase
above a critical hopping.
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