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We present accurate quantum Monte Carlo (QMC) calculations which enabled us to determine
the structure, spin multiplicity, ionization energy, dissociation energy, and spin–dependent electronic
gaps of the vanadium–benzene system. From total/ionization energy we deduce a high-spin state
with vastly different energy gaps for the two spin channels. For this purpose we have used a
multi-stage combination of techniques with consecutive elimination of systematic biases except for
the fixed-node approximation in QMC. Our results significantly differ from the established picture
based on previous less accurate calculations and point out the importance of high-level many-body
methods for predictive calculations of similar transition metal–based organometallic systems.
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Complexes of 3d transition metal atoms (TM) with
benzene molecule(s) (Bz), TM-Bz, represent one of the
most important families of π-bonded organometallics [1].
In the gas phase, these systems can be produced either
by conventional synthetic procedures or by laser vapor-
ization techniques [2, 3]. Mass spectra experiments [4]
of TM+

nBzm complexes indicate presence of two types
of atomic structures: i) rice–ball structures, with ei-
ther several atoms coating the benzene or with benzene
molecules wrapped around one or a few TM atoms; ii)
the sandwich-type structures TM+

nBzn+1, with the ba-
sic building block being the half–sandwich TM–Bz, see
Fig. 1. The sandwich structures are of particular inter-
est since they can exhibit ferro/antiferromagnetic cou-
pling [5, 6] and therefore energy differences of the or-
der of chemical accuracy (≈1 mHa or 0.04 eV) are of
paramount importance. Their properties are expected to
vary across the TM series, with the early and late TM–
Bz systems showing distinctly different properties [7, 8].
In addition, previous studies have revealed a wealth of
interesting magnetic [8–10] and transport effects [5, 11].
Among the most important and intriguing applications
is the use of sandwich-type TM-benzenes as spin valves,
featuring system-size dependent metallic behavior for the
majority spin electrons and a semiconductor gap for the
minority spin electrons [11]. The applicability potential
is enhanced by the possibility of stacking such units into
longer chains with tunable properties for spintronics ap-
plications.

In order to shed new light on this family of systems we
have performed a case study of one particular member,
namely VBz half–sandwich and, using QMC methods,
we predict completely new picture for its properties. Us-
ing the explicitly correlated QMC techniques, we clearly
demonstrate that the questions related to the spin multi-
plicities and associated effects in TM-Bz(s) are much too
subtle for more approximate mainstream methods and

∗Electronic address: ivan.stich@savba.sk

FIG. 1: Half–sandwich (top panel) and sandwich–type (lower
panel) of structures of TM-Bz complexes. Schematics of pos-
sible Jahn-Teller distortions are shown in the top panel.

that top accuracy many-body approaches are crucial to
provide both predictive power and consistent comparison
with experiments.

Our letter seeks to answer primarily three questions: 1)
what happens to a transition metal atom with unpaired
3d electrons when anchored on an organic molecule such
as benzene; 2) what is the TM–Bz bonding strength re-
sulting from such interactions; 3) what are the corre-
sponding spin gaps for majority and minority spin chan-
nels. In particular, will the vanadium outer electrons seek
to maximize the spin multiplicity to 6 even when bonded
to benzene or the opposite will happen and the spin of
the vanadium atom will be quenched?

To the best of our knowledge, so far only DFT tech-
niques have been applied to answer the above ques-
tions [5, 6, 8–10]. The earlier studies suggested that
magnetic moments/spin multiplicities of transition metal
atoms embedded in TM-Bz complexes were increasing
from Sc to Cr and decreasing from Mn to Ni in anal-
ogy with their behavior when supported on metal sur-
faces [8, 12]. However, the robustness and reliability of
these DFT predictions have been undermined by later
studies which found conflicting results for spin multiplic-
ities and dissociation energies pointing thus to a limited
accuracy of DFT for these important quantities. Despite
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the keen interest in these systems, experiments alone do
not provide enough insights either. The experiments deal
almost exclusively with cations and information on the
neutral TM-Bz complexes, for instance dissociation en-
ergies, are usually determined indirectly from measured
dissociation energies on cations, which themselves exhibit
large spread due to experimental bias [13–15].

Having in mind the limitations of previous studies we
have performed the most accurate and complete study of
vanadium–benzene half–sandwiches using the advanced
correlated QMC method [16]. QMC offers a favorable
scaling with the system size and its accuracy is lim-
ited only by the choice of the nodal hypersurface of the
many–body wave function [16]. In addition, the sensi-
tivity of the key geometry parameters prompted us to
apply QMC to structural optimizations as well, mak-
ing thus another step beyond mainstream QMC stud-
ies. We deal with both these challenges by first deter-
mining sufficiently accurate nodal hypersurfaces followed
by QMC structural optimization which eliminates pos-
sible bias coming from geometries determined solely in
less accurate methods such as DFT. This iterated QMC
strategy then enables us to determine the structure, spin
multiplicity, ionization energy, dissociation energy, and
spin–dependent electronic gaps of the VBz system. For
the VBz system we find ground–state spin multiplicity
and dissociation energy that differ significantly from the
previous DFT results. At the same time, our study points
towards shortcomings and possible biases in the existing
experimental results.

All simulations used the following five–level refinement
strategy which enabled to filter out basically all of the
systematic biases: 1) initial geometries were obtained
from DFT optimization, 2) trial wavefunction was con-
structed using a DFT nodal hypersurface, 3) trial wave-
function was optimized using VMC (variational Monte–
Carlo) techniques, 4) energies were computed from DMC
(diffusion Monte–Carlo) simulations, and 5) geometry
was optimized at the QMC level with focus on the key
V–Bz distance. For static DFT and CASSCF we used
the GAMESS suite of codes [17], while all VMC and DMC
calculations used the QWalk code [18].

The ground–state geometries were initially calculated
using DFT techniques with GGA–type BPW91 [19,
20], hybrid B3LYP [21], meta–hybrid TPSSh [22], and
double–hybrid B2PLYP [23] exchange-correlation func-
tionals. These xc–functionals, except for B2PLYP where
construction of the wave function is more intricate, were
also used in the DFT energy calculations and in construc-
tion of trial wave functions for the fixed-node QMC cal-
culations. Use of the BPW91 functional was motivated
mainly by comparison purposes since previous DFT stud-
ies of VBz employed either the BPW91 functional [8–10]
or the related PBE functional [6, 24]. The impact of exact
exchange mixing and kinetic energy density or MP2 cor-
relation can be judged from comparison between B3LYP,
TPSSh, B2PLYP, and BPW91 results. The Greeff-Lester
type (non-singular) effective core pseudopotential [25, 26]

and cc-pVTZ basis sets [27] were used for all species. We
have tested various active spaces in the CASSCF method
to determine the impact of correlation on the orbitals
and corresponding nodal hypersurfaces for the V+, V,
Bz, VBz+, and VBz complexes. While there was little
difference in the atom and Bz case, in the VBz/VBz+

complexes the nodal hypersurfaces constructed from the
CASCSF orbitals provided inferior accuracy to those ob-
tained from the (mean-field correlated) DFT orbitals [28].
The Jastrow factors of the Schmidt–Moskowitz type [29]
have included electron–electron, electron–nucleus, and
electron–electron–nucleus correlations. In the course of
DFT geometry optimizations we found that V–Bz dis-
tance is the least robustly determined structural degree–
of–freedom. Therefore the V–Bz distance was QMC–
reoptimized using simple parabolic fits.

We have considered three multiplicities of VBz, namely
2, 4, and 6. Our DFT optimized energies for both func-
tionals are summarized in Fig. 2 and Tab. I. The sys-
tem exhibits spin multiplicity-dependent atomic struc-
ture. Using symmetry unconstrained optimization we
found that for M = 2 the system adopts C2v/C6 symme-
try, depending on the xc functional used. For M = 4 the
system lowers the energy by lowering the symmetry to C1

which, in practical terms, is very similar to the zig–zag C2

geometry, see Fig. 1. For M = 6 the symmetry is reduced
to C1, irrespective of the xc-functional used. Such a
structure results in a “wavy” configuration of Bz with the
V atom moving away from the center of the Bz ring. The
symmetry reduction, while small in geometrical terms,
reduces the DFT energies by up to ≈ 0.2 eV. The increase
of the spin multiplicity is accompanied by a systematic
increase in the medium V–C distance from ≈2.10 Å for
M = 2, to ≈2.45 Å for M = 6. The DFT calculations
lead to contradictory results for the ground–state spin
multiplicities, with B3LYP and B2PLYP predicting VBz
to be spin sextet, whereas BPW91 and TPSSh favor the
spin doublet, see Fig. 2. The energy margins for both
multiplicities are of the order of ≈0.5 eV. Hence, partic-
ular choice of the xc–functional affects the DFT energies
by a factor exceeding chemical accuracy by an order of
magnitude and leads to opposite prediction of the stable
spin multiplets.

The fixed-node DMC/BPW91, DMC/B3LYP, and
DMC/TPSSh calculations, Tab. I, at optimized geome-
tries find qualitatively very similar results for M = 2, 4,
and 6 multiplicities yielding nearly degenerate energies
within the margin of ≈0.1 eV. From all these results we
conclude that use of DFT nodal hypersurfaces introduces
an uncertainty of the order of 0.1 eV. We note in passing
that DMC compresses the energy scale from the DFT
scale of ≈0.5 eV to ≈0.1 eV, hence by a factor of 5! This
makes us to conclude that all nodal hypersurfaces yield
essentially degenerate energies. Based on total energy
only, given the (≈0.1 eV) DMC error bars it is impossi-
ble to decide spin multiplicity of VBz directly even with
the QMC methods.

In order to discriminate between the different almost
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FIG. 2: Energies, relative to the minimum, of VBz for various
spin multiplicities calculated in the DFT and DMC/B3LYP
approaches.

TABLE I: QMC energies of VBz for spin multiplicities M = 2,
4, 6 after QMC optimization of the V–Bz distance, see Fig. 3.
r is the average distance between V and benzene C atoms.

M
trial

symmetry
EDMC E

DMC
rel r

w.f. a.u. eV Å

2

TPSSh C6 -108.9296(8) 0.00(4) 2.10

B3LYP C2v -108.9254(12) 0.10(4) 2.09

BPW91 C2v -108.9243(10) 0.13(4) 2.10

4

TPSSh C1 -108.9259(7) 0.08(4) 2.23

B3LYP C1/C2 -108.9248(7) 0.12(5) 2.21

BPW91 C1 -108.9243(7) 0.13(4) 2.23

6

TPSSh C1 -108.9250(7) 0.11(4) 2.43

B3LYP C1 -108.9241(9) 0.14(4) 2.45

BPW91 C1 -108.9199(10) 0.25(4) 2.43

degenerate spin states we calculate the vertical ionization
potentials IP for each multiplicity. The result is listed
in Tab. II along with the summary of calculated disso-
ciation energies ED and comparison with experimental
values and other calculations. We conclude that only
the DMC IP calculated in M = 6 multiplicity is in good
agreement with the experimental value. The DFT IPs
are reasonably close to the experimental value of 5.11(4)
eV and of comparable quality to the DMC results. How-
ever, this is clearly an effect of error cancellation, since
similar underbinding (B3LYP, B2PLYP) or overbinding
(BPW91, TPSSh) biases affect both the cation and the
neutral VBz. All other multiplicities yield significantly
worse agreement with the experiment. Hence, we con-
clude that the most probable spin multiplicity is the spin
sextet. This conclusion is also in agreement with the high
spin–state of the cation [28, 30]. Comparison based on IP
is a very stringent test as the vertical ionization energies
are experimentally directly measurable.
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FIG. 3: Energies, aligned to zero, of VBz for M = 2, 4, 6
as a function of the average V–C distance r in DFT–B3LYP
(dashed line) and DMC/B3LYP (points with error bars and
fit/full line) approaches.

TABLE II: Dissociation/vertical ionization energy of VBz in
eV. ED

DFT labels DFT dissociation energies, ED
DMC/IPDMC

the DMC dissociation/ionization energy. ED
exp/IPexp are the

experimental dissociation/vertical ionization energy.

M trial w.f. ED
DFT E

D
DMC E

D
exp IPDMC IPexp

2

TPSSh

1.57 0.77(3) 5.69(3)

5.11(4)⋄

4 1.53 0.67(3) 5.26(4)

6 1.35 0.64(3) 5.01(3)

2

B3LYP

0.17 0.65(5) 5.61(4)

4 0.31 0.63(5) 0.78(9)‡ 5.37(3)

6 0.35 0.61(5) 0.74(9)§ 5.01(4)

2

BPW91

1.92 0.65(4) 1.05(21)¶ 5.61(4)

4 1.80 0.65(4) 5.37(3)

6 1.54 0.53(4) 4.94(4)

2⊕

BPW91

2.09 - 5.71

4⊕ 0.67 - 5.53

6⊖ 0.81 - 5.27

⊕Ref.[10], ⊖Ref.[8], Ref.[9], ‡Ref.[13], §Ref.[14], ¶Ref.[15], ⋄Ref.[4].

Contrary to the ionization energies, dissociation en-
ergies are experimentally estimated only indirectly us-
ing the relation [8–10] ED(TMBz) = ED(TMBz+) +
IP (TMBz) − IP (TM), where ED(TMBz+) is dissocia-
tion energy of the cationic TMBz, and IP (TMBz) and
IP (TM) are vertical ionization potentials of TMBz and
TM atom, respectively. Such a formula would only be
strictly valid if adiabatic ionization potentials were used.
Computationally the dissociation energies are calculated
directly. They require knowledge of the fragments, the
atom and the Bz molecule. While Bz molecule is easy to
compute accurately, it is somewhat more complicated to
calculate the energy of the 4

F (3d34s2) ground–state of
the V atom accurately since the wave function requires
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two determinants to describe correctly the spatial-spin
symmetries. At the DMC level we obtain for the ioniza-
tion process (4F →

5D) 6.64(2) eV [28] compared to the
experimental 6.75 eV [31]. We find quite staggering dis-
sociation energy differences between the different DFT
functionals. For example, for the doublet state B3LYP
yields 0.17 eV, B2PLYP renders it unstable (not shown),
while TPSSh yields 1.57 eV and BPW91 1.92 eV! How-
ever, our DFT calculations do not reproduce the previous
DFT studies [8–10] which find dissociation energies be-
tween 0.67 and 2.09 eV for the three spin multiplicities,
Tab. II, even if we use the same xc-potential. These dif-
ferences arise most likely due to a combination of smaller
basis sets and use of high–symmetry structures in the
previous studies. Surprisingly, even multireference CI
method (with the largest virtual space that could be af-
forded) finds negligible bonding energy of 0.03 eV and M
= 4 [32] in complete disagreement with the experiment
and all other theoretical estimates. Our DMC dissocia-
tion energies of ≈0.65 eV turn out to be very robust and
only weakly dependent on the xc-functional used to con-
struct the nodal hypersurfaces. Experiments yield disso-
ciation energies between 0.74 and 1.05 eV. Note, however,
that these values are obtained only indirectly using pos-
sibly shifted dissociation energy of the cation [13–15]
and the vertical ionization energy instead of the adia-
batic one. Taking into account these considerations, our
DMC values all fall within the large experimental error
bars which include mentioned systematic biases.
Motivated by the intentions of using TM–Bz sand-

wiches as spin valves, we have calculated the correspond-
ing gaps for the VBz half–sandwich. While in DFT meth-
ods this is often calculated as HOMO–LUMO gap, in
the many–body QMC the calculations of the gap are ob-
tained as differences of total energies [16] as given by

E↑,↓
g = (E↑,↓

N+1 −EN)− (EN −E
↑,↓
N−1). At the DMC level

we find E↑
g = 4.90 eV and E↓

g = 10.04 eV compared to

HOMO-LUMO E↑
g = 2.34 eV and E↓

g = 6.28 eV from
DFT, about a factor of two smaller. The difference be-
tween the spin–majority/spin–minority gaps is expected
to increase with the sandwich length [11].

In summary, we have carried out study of the
vanadium-benzene organometallic complex using the ex-
plicitly correlated QMC methods. These calculations in-
volved also QMC geometry optimizations and a multi-
stage strategy to eliminate basically all systematic biases
except the fixed-node error. Although the QMC calcu-
lations are much more demanding computationally, the
results enabled us to shed new light on the previous DFT
calculations and their inconsistencies as well as to reveal
genuine DFT biases. For example, we found incorrect
and varying energy ordering of spin multiplets depend-
ing on the employed functional. The errors are of the
order of few tenths of eV, which is very significant con-
sidering the true spin-flip energies. Interestingly, QMC
results suggest that the available states are basically de-
generate. Furthermore, we were able to consistently iden-
tify the states of interest in theory and experiment using
accurate values of ionization energies. Our calculations
yielded also dissociation energies which point out pos-
sible presence of biases in corresponding experimental
values and we calculated spin gaps which are of inter-
est for spintronics applications. These calculations offer
not only new insights for VBz systems but open new
opportunities for using QMC methods for many other
organometallic systems of similar importance.
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