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Modified gravity theories capable of genuine self-acceleration typically invoke a galileon scalar
which mediates a long range force, but is screened by the Vainshtein mechanism on small scales. In
such theories, non-relativistic stars carry the full scalar charge (proportional to their mass), while
black holes carry none. Thus, for a galaxy free-falling in some external gravitational field, its central
massive black hole is expected to lag behind the stars. To look for this effect, and to distinguish
it from other astrophysical effects, one can correlate the gravitational pull from the surrounding
structure with the offset between the stellar center and the black hole. The expected offset depends
on the central density of the galaxy, and ranges up to ∼ 0.1 kpc for small galaxies. The observed
offset in M87 cannot be explained by this effect unless the scalar force is significantly stronger than
gravity. We also discuss the systematic offset of compact objects from the galactic plane as another
possible signature.

PACS numbers:

There has been a lot of interest in theories of modi-
fied gravity that might explain the observed accelerated
expansion of the universe [1, 2]. Theories capable of gen-
uine self-acceleration – without invoking vacuum energy
in the Einstein frame [3] – are especially interesting, and
they generally involve introducing a scalar (ϕ) that re-
spects the galileon symmetry ϕ → ϕ+ b+ cµx

µ, where b
is a constant and cµ is a constant vector [4]. This scalar
mediates a long-ranged force, the so-called fifth force in
addition to the usual gravitational force between objects.
Thanks to the Vainshtein mechanism [5], the scalar is
screened on small scales, so that solar system constraints
are satisfied. To see how it works, let us illustrate with
the simplest galileon model, inspired by DGP [6, 7]; the
equation for the scalar (in Einstein frame) is 1:

�ϕ+
2

3m2

[

(�ϕ)2 − ∂µ∂νϕ∂
µ∂νϕ

]

= −8παGTµ
µ , (1)

where ϕ is related to the standard notation π for the
galileon by π = αϕ, and Tµ

µ is the trace of the mat-
ter energy-momentum, which for our purposes can be
equated with (negative of) the matter density ρ, assum-
ing it is non-relativistic. The constant α quantifies the
scalar-matter coupling, and is generically of order unity,
i.e. of gravitational strength. For instance, it takes the
value 1/

√
6 in massive gravity models [8]. The mass scale

m is generally of the order of the Hubble constant today
m ∼ H0. We are interested in solutions of this equa-
tion in the quasi-static limit, meaning time derivatives
can be ignored and � → ∇2. On large scales, the lin-
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1 Two additional galileon symmetric interaction terms can be writ-
ten down in the equation of motion: (�ϕ)3 − 3�ϕ(∂µ∂νϕ)2 +
2(∂µ∂νϕ)3 and (�ϕ)4 − 6(�ϕ)2(∂µ∂νϕ)2 + 8�ϕ(∂µ∂νϕ)3 +
3[(∂µ∂νϕ)2]2 − 6(∂µ∂νϕ)4. All results in this paper apply in
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ear term ∇2ϕ dominates; Eq. (1) resembles the Pois-
son equation, with ϕ playing the role of the gravitational
potential. A localized source ρ yields a profile ϕ that
scales inversely with distance r. However, as one ap-
proaches the source, the interaction term (second term
on the l.h.s.) dominates, and simple power counting re-
veals ϕ ∝ √

r. Thus, at small distances, ϕ is screened
relative to the normal 1/r gravitational potential. The
transition scale is known as the Vainshtein radius, and
is roughly given by (GM/m2)1/3 for spherically symmet-
ric configurations, where M is the mass of the source.
For instance, the entire solar system fits within the Vain-
shtein radius of the Sun, about 0.1 kpc, greatly suppress-
ing the scalar force sourced by the Sun. What makes the
galileon model attractive from this viewpoint, is that it
is the same nonlinear interaction that is responsible both
for Vainshtein screening, and for self-acceleration [4].

An important property of Eq. (1) is that it can be
rewritten in the form ∂µJ

µ = −Tµ
µ, where Jµ is a non-

linear function of derivatives of ϕ [4]. One can thus define
a scalar “charge” Q = −

∫

d3xTµ
µ =

∫

d3x ρ, which is
none other than the mass M , aside from an exception de-
scribed below 2. As shown in [9], the scalar charge also
quantifies the response of an object to an external field,
i.e. an external gravitational Φext + scalar ϕext field ex-

erts a net force of M~̈x = −M~∇Φext − αQ~∇ϕext on an
object of mass M and charge Q. It is worth emphasiz-
ing that the Vainshtein mechanism does not suppress the
scalar charge Q at all – indeed, the fact that Q = M en-
forces the equivalence principle, i.e. making the motion

2 One might wonder if −
∫
d3xTµ

µ =
∫
d3x ρ is too strong an as-

sumption, since an apparently non-relativistic object might have
relativistic components, e.g. gluons in protons. It turns out that
as long as the object in question is stationary, and has a finite
extent, −

∫
d3xTµ

µ = −

∫
d3xT0

0 =
∫
d3x ρ holds, by virtue of

a tensorial virial theorem [10]. For further discussions, including
the renormalization of Q by quantum effects, see [10, 11].
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of an object independent of its mass. What the Vain-
shtein mechanism suppresses is the external scalar field
ϕext that an object senses when it is close to the source
of that field.

The one exception to Q = M is compact objects, such
as black holes. These are objects whose mass receives
a significant contribution from the gravitational binding
energy, a contribution that is not included in the scalar
charge Q. Compact objects such as neutron stars thus
have Q/M < 1, with black holes as the extreme limit
where Q/M = 0. This is consistent with the notion of
black holes having no hair, more specifically no galileon
hair which we prove in a separate paper [12] (see also [13,
14]) 3. The fact that compact objects have a suppressed
scalar charge is not new [15, 16]. What is new with the
advent of recent modified gravity models is the screening
mechanism, which revives scalar-tensor theories that are
otherwise already ruled out by solar system tests. Notice
that unlike mass or electric charge, our scalar charge Q
does not obey a conservation law. It is thus consistent
for an object with Q/M = 1 to undergo gravitational
collapse and end up with Q/M = 0.

Now, recall that Q also quantifies the response of an
object to an external scalar field [9]. Thus, under some
external Φext and ϕext, fields a normal non-compact star
(as well as dark matter particles) would fall according

to ~̈x = −~∇Φext − α~∇ϕext, while a black hole would

fall according to ~̈x = −~∇Φext, insensitive to the scalar
force. The challenge is to find situations where the scalar
ϕext is not already suppressed by the Vainshtein mech-
anism. Since both black holes and stars typically re-
side within galaxies whose Vainshtein radii greatly ex-
ceed their sizes, it would seem hopeless to observe the
purported difference in the rate of fall between a nor-
mal star and a black hole. The galileon symmetry helps
save the day. The symmetry tells us that given any so-
lution to the scalar Eq. (1), one can always add a linear

gradient, i.e. ϕext with a constant ~∇ϕext, and obtain
another solution. For any given object, whether such a
linear gradient is present and how large it is, depends
on the boundary conditions. For a galaxy, the boundary
conditions are supplied by the surrounding large scale
structure. Interestingly, as is recently demonstrated in a
series of numerical simulations [17–20], the galileon scalar
indeed obeys linear dynamics on sufficiently large scales
(∼> 10 Mpc), meaning the large scale structure generates
a galileon field that is unsuppressed by the Vainshtein

3 If one thinks of black holes as vacuum solutions, having no scalar
charge is certainly a solution, but the point of no-hair theorem is
to show that it is in fact the only solution, and thus the collapse
of an actual star would presumably lead to such a configuration.
We should stress that our proof in [12] concerns only spherically
symmetric black holes. We take it as suggestive that rotating
black holes likely share the same no-galileon-hair property, but it
remains to be proven. In any case, the argument for a suppressed
Q/M for compact objects is quite robust.

mechanism 4. The large-scale-structure-generated scalar
field has a long wavelength, and can be approximated as
a linear gradient on the scale of a galaxy. This linear gra-
dient penetrates the Vainshtein zone of the galaxy, and
can act unsuppressed on the galaxy and its constituents.
In other words, the galaxy falls according to this un-
suppressed scalar ϕext induced by large scale structure.
So do its constituent dark matter, non-compact stars,
but not its compact objects. The most readily observ-
able compact object is the central massive black hole if
there is nuclear activity. The central black hole, lacking a
scalar charge, does not respond to the scalar force, while
the stars (and dark matter particles) do. The net effect is
that the black hole will lag behind the stars in their over-
all large-scale-structure-induced motion. In other words,
the black hole will be offset from the center of the galaxy,
or more precisely, from the minimum of the galactic grav-
itational potential. The non-zero offset means there’s an
extra (purely gravitational, not scalar) tug on the black
hole from the central region of the galaxy. This suffices
to compensate for the lack of a scalar force on the black
hole, and keep the black hole and stars in equilibrium,
moving in tandem. One can estimate the size of the off-
set r by equating the extra scalar acceleration sensed by

the stars α|~∇ϕext| with the extra gravitational tug on
the black hole GMgal(< r)/r2, where Mgal(< r) is the
mass enclosed within radius r of the galaxy. We find a
displacement

r = 0.1 kpc

(

2α2

1

)

(

|~∇Φext|
20(km/s)2/kpc

)

(

0.01M⊙pc
−3

ρ0

)

.(2)

Here, we estimate ϕext by 2αΦext, since the linear scalar
ϕext satisfies the same Poisson equation for the gravita-
tional potential Φext, but with the source term scaled up
by 2α (see Eq. [1]). The typical gravitational accelera-

tion |~∇Φext| can be estimated by the typical peculiar mo-
tion multiplied by Hubble: 300 km/s × 70 km/s/Mpc ∼
20( km/s)2/kpc. A more careful calculation of the rms

|~∇Φext| using the observed matter power spectrum gives
a number fairly close to this (e.g. [21]). It should be

kept in mind however that |~∇Φext| is a stochastic quan-
tity, and its value depends on environment. The central
density of ρ0 ∼ 0.01M⊙/pc

3 is appropriate for dwarf or
low surface brightness galaxies, where the effect is the
largest. We provide explicit scaling with the relevant pa-
rameters in Eq. (2) so that one can easily extrapolate to
other values.

4 In other words, while the Vainshtein mechanism does operate on
small scales, the Vainshtein zones of nonlinear objects do not per-
colate the universe. Note the Vainshtein radius, estimated from
an isolated spherically symmetric object, can be a misleading
concept when applied to more complex situations. The tensor
structure of Eq. (1) is such that screening works very differently
in non-spherically symmetric situations.
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In modeling the central region of a galaxy, several is-
sues should be kept in mind. First of all, the above es-
timate assumes the density profile is approximately flat
close to the center. For fixed density at the core radius,
a steep profile would imply a small offset. Fortunately,
low central density galaxies where the offset is the largest
also have fairly flat profiles e.g. [22]. Second, the rele-
vant central density is the one averaged outside the black
hole’s sphere of influence. Materials within the sphere of
influence would simply move with the black hole. It is the
materials outside that are important for determining the
offset. Thus, Bahcall-Wolf type cusps are not relevant
for our considerations [23].

Galaxies for which both the stars and the central mas-
sive black hole are readily observable are those with a low
level nuclear activity, namely Seyferts. Our estimate in
Eq. (2) suggests that the offset would be observable pref-
erentially in small galaxies. Depending on the distance
(up to say tens of Mpc), galaxies with a central den-
sity in the range ∼ 0.003 − 0.03M⊙/pc

3, corresponding
roughly to rotational velocities around ∼ 30− 120 km/s
[22], should have a measurable offset. Until recently, such
small Seyferts have not been well explored observation-
ally. A classic case of a dwarf galaxy containing an active
nucleus is NGC 4395 [24]. A good size sample (∼ 30) of
small Seyferts was recently reported by [25]. 5

An interesting question is how fast the black hole
moves relative to the stars, on its way to the equilib-
rium (offset) position. Using the same set of parameters
displayed in Eq. (2), we find a fairly small velocity of ∼ 2
km/s. At such a velocity, dynamical friction is unimpor-
tant. The time it takes for the black hole to traverse
the requisite distance is about 108 years. This is fairly
close to some estimates of the nuclear activity time-scale
[26], though the conditions for nuclear activity are rather
uncertain.

M87 is an interesting case, where its massive black hole
is known to be offset from the (bulge) stellar center by
a projected distance of ∼ 7 pc [27]. Its central density
is about ρ0 ∼ 20M⊙/pc

3. For our effect to reproduce
such an offset thus requires α ∼ 8, assuming the external
gravitational acceleration on M87 is typical. This is a
scalar-matter coupling that is quite a bit stronger than
gravitational. The more plausible explanations for the
observed offset are: acceleration by an asymmetric jet,
and gravitational wave recoil from a merger [27]. Two
other explanations considered are: the active black hole
being a member of a binary, and Brownian motion. The
former can be constrained by the lack of a jet precession,
and can also be tested by monitoring the system over
time. The latter is a small effect, giving an offset < 0.1
pc in the case of M87 [27].

These alternative mechanisms raise a practical ques-
tion: in the event one observes a black hole offset in

5 We thank Jules Halpern for pointing out these cases to us.

a lower central density galaxy, consistent with α ∼ 1,
how does one disentangle the modified gravity effect from
other astrophysical effects? One can exploit a distin-
guishing feature of the modified gravity effect, that is,
the offset should be correlated with the gravitational pull
of the surrounding large scale structure, in both its direc-
tion and strength. For instance, galaxies are expected to
stream out of voids, their resident black holes should lag
behind the stars in that streaming motion. Voids are es-
pecially interesting places to look because the scalar field
is expected to be unscreened there. A rough argument
goes as follows: Eq. (1) can be rewritten schematically
in the form: H−2

0 ∂2ϕ+ (H−2
0 ∂2ϕ)2 ∼ αρ/ρ̄. Thus, voids

where ρ/ρ̄ < 1/α are natural places where one can consis-
tently ignore the nonlinear term compared to the linear
term on the left. However, we expect large scale structure
to source a linear (i.e. unsuppressed) scalar even away
from voids. It would be very useful to map out the pre-
cise gravitational and scalar fields in our neighborhood,
using fairly detailed knowledge of the mass distribution
of the local universe [28]. The two large-scale-structure-
generated fields Φext and ϕext are expected to roughly
align, but an accurate map would aid in isolating the
modified gravity effect from other astrophysical effects.
Note also that typical astrophysical effects produce a ve-

locity offset (∼ 10− 1000 km/s) that is quite a bit larger
than what modified gravity predicts.6

It is worth emphasizing that this offset effect – namely
the lagging of compact objects behind stars in the over-
all streaming motion of the host galaxy – is not confined
to the central massive black hole. Any compact objects,
regardless of its mass, will display this effect, though the
effect is larger for a black hole than a neutron star i.e.
the offset is expected to scale as 2GM/R, where R is
the radius of the object. The advantage of the central
massive black hole is that it is readily observable even
in a distant galaxy, provided it is active. For other less
massive compact objects, the best bet is to look within
our own galaxy. One possible signature is to see if com-
pact objects are systematically offset from the galactic
plane (defined by the stars), in the opposite direction
of our galaxy’s streaming motion. Using numbers from
Eq. (2), and adopting the solar neighborhood value of
ρ0 ∼ 0.18M⊙/ pc

3, we estimate the offset to be about 2
pc for black holes. It would be useful to compute this off-
set more carefully by calculating the precise large-scale-
structure-generated scalar force on the Milky Way.

6 An exception is Brownian motion which produces small
velocity perturbations to the massive black hole: ∼

vstar(Mstar/Mb.h.)
1/2. Using the relation mass of black hole

Mb.h. ∼ 108.12 M⊙(vstar/200 km/s)4.24 [29], the smallest galax-
ies (vstar ∼ 30 km/s) have the largest velocity perturbation
of ∼ 0.2 km/s. For such galaxies, the spatial offset is ∼

rcore(Mstar/Mb.h.)
1/2

∼ 0.03 kpc [27], thus comparable to the
modified gravity effect. Hence, it is important to use the corre-
lation with large scale structure as a discriminant.
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A natural question is: should we expect the same off-
set effect for other screening mechanisms? Theories that
screen by means of scalar self-interactions of the poten-
tial type, such as the chameleon [30] or the symmetron
[31], operate very differently from those that screen by
derivative interactions, i.e. via the Vainshtein effect. In-
deed, the scalar force on/from the Sun is screened in
non-Vainshtein theories by virtue of the Sun’s suppressed
Q/M . In chameleon and symmetron theories, objects
with a gravitational potential similar to the Sun’s (∼
10−6), or deeper, have Q/M ∼ 0. Thus, main sequence
stars and black holes fall at the same rate, and one ex-
pects no offset between the two. However, dark matter
and stars can fall differently if the host galaxy has a suffi-
ciently shallow gravitational potential [9]. This can lead
to an interesting warping of the galactic disk, pointed
out by Jain and VanderPlas [32]. For other observational
tests of chameleon/symmetron screening, see for instance
[9, 30, 31, 33–36].

In summary, we propose a test of Vainshtein screen-
ing in galileon theories by comparing the rate of fall for
compact objects versus non-relativistic stars. A positive
detection of a difference will be a great boost to some
of the recent ideas of modifying gravity to explain cos-
mic acceleration. A negative detection can be used to
put an upper limit on the scalar-matter coupling α. A
bound reaching 0.1 is conceivable with existing data, and
will suffice to rule out most of these recent ideas. Per-
haps the most interesting observation is that relatively
small scale, local data can shed light on the dark energy
problem and the nature of gravity.
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