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We provide a new quantum algorithm that efficiently determines the quality of a least-squares
fit over an exponentially large data set by building upon an algorithm for solving systems of linear
equations efficiently (Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)). In many cases, our
algorithm can also efficiently find a concise function that approximates the data to be fitted and
bound the approximation error. In cases where the input data is a pure quantum state, the algorithm
can be used to provide an efficient parametric estimation of the quantum state and therefore can be
applied as an alternative to full quantum state tomography given a fault tolerant quantum computer.

PACS numbers: 03.67.-a, 03.67.Ac, 42.50.Dv

Invented as early as 1794 by Carl Friedrich Gauss, fit-
ting data to theoretical models has become over the cen-
turies one of the most important tools in all of quantita-
tive science [1]. Typically, a theoretical model depends
on a number of parameters, and leads to functional re-
lations between data that will depend on those param-
eters. Fitting a large amount of experimental data to
the functional relations allows one to obtain reliable esti-
mates of the parameters. If the amount of data becomes
very large, fitting can become very costly. Examples in-
clude inversion problems of X-ray or neutron scattering
data for structure analysis, or high-energy physics with
giga-bytes of data produced per second at the LHC. Typ-
ically, structure analysis starts from a first guess of the
structure, and then iteratively tries to improve the fit to
the experimental data by testing variations of the struc-
ture. It is therefore often desirable to test many different

models, and compare the best possible fits they provide
before committing to one for which one extracts then the
parameters from the fit. Obtaining a good fit with a
relatively small number of parameters compared to the
amount of data can be considered a form of data compres-
sion. Indeed, also for numerically calculated data, such
as many-body wave-functions in molecular engineering,
efficient fitting of the wave-functions to simpler models
would be highly desirable.

With the rise of quantum information theory, one
might wonder if a quantum algorithm can be found that
solves these problems efficiently. The discovery that ex-
ploiting quantum mechanical effects might lead to en-
hanced computational power compared to classical in-
formation processing has triggered large-scale research
aimed at finding quantum algorithms which are more
efficient than the best classical counterparts [2–7]. Al-
though fault–tolerant quantum computation remains out
of reach at present, quantum simulation is already now
on the verge of providing answers to questions concern-

ing the states of complex systems that are beyond classi-
cal computability [8, 9]. Recently, a quantum algorithm
(called HHL in the following) was introduced that ef-
ficiently solves a linear equation, Fx = b, with given
vector b of dimension N and sparse Hermitian matrix
F [10]. “Efficient solution” means that the expecta-
tion value 〈x|M|x〉 of an arbitrary poly-size Hermitian
operator M can be found in roughly O(s4κ2 log(N)/ǫ)
steps [11], where κ is the condition number of F, i.e. the
ratio between the largest and smallest eigenvalue of F,
s denotes the sparsenes (i.e. the maximum number of
non-zero matrix elements of F in any given row or col-
umn), and ǫ is the maximum allowed distance between
the |x〉 found by the computer and the exact solution. In
contrast, they show that it is unlikely that classical com-
puters can efficiently solve similar problems because it
would imply that quantum computers are no more pow-
erful than classical computers.

While it has remained unclear so far whether expec-
tation values of the form 〈x|M|x〉 provide answers to
computationally important questions, we provide here
an adaption of the algorithm to the problem of data fit-
ting that allows one to efficiently obtain the quality of a
fit without having to learn the fit-parameters. Our al-
gorithm is particularly useful for fitting data efficiently

computed by a quantum computer or quantum simula-
tor, especially if an evolution can be efficiently simulated
but no known method exists to efficiently learn the re-
sultant state. For example, our algorithm could be used
to efficiently find a concise matrix–product state approx-
imation to a groundstate yielded by a quantum many–
body simulator and assess the approximation error. More
complicated states can be used in the fit if the quantum
computer can efficiently prepare them. Fitting quantum
states to a set of known functions is an interesting al-
ternative to performing full quantum-state tomography
[12].
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Least-squares fitting– The goal in least–squares fitting
is to find a simple continuous function that well approx-
imates a discrete set of N points {xi, yi}. The function
is constrained to be linear in the fit parameters λ ∈ CM ,
but it can be non-linear in x. For simplicity we consider
x ∈ C, but the generalization to higher dimensional x is
straight-forward. Our fit function is then of the form

f(x,λ) :=

M
∑

j=1

fj(x)λj

where λj is a component of λ and f(x,λ) : CM+1 7→ C.
The optimal fit parameters can be found by minimizing

E =

N
∑

i=1

|f(xi,λ)− yi|2 = |Fλ− y|2 (1)

over all λ, where we have defined the N ×M matrix F

through Fij = fj(xi), F
t is its transpose, and y denotes

the column vector (y1, . . . , yN)t. Also, following HHL, we
assume without loss of generality that 1

κ2 ≤ ‖F†F‖ ≤ 1
and 1

κ2 ≤ ‖FF†‖ ≤ 1 [10]. Throughout this Letter we
use ‖ · ‖ to denote the spectral norm.
Given that F†F is invertible, the fit parameters that

give the least square error are found by applying the
Moore–Penrose pseudoinverse [13] of F, F+, to y:

λ = F+y = (F†F)−1F†y. (2)

A proof that (2) gives an optimal λ for a least–square fit
is given in the supplementary material.
The algorithm consists of three subroutines: a quan-

tum algorithm for performing the pseudo–inverse, an
algorithm for estimating the fit quality and an algorithm
for learning the fit-parameters λ.

1. Fitting Algorithm— Our algorithm uses a quantum
computer and oracles that output quantum states that
encode the matrix elements of F to approximately pre-
pare F+y. The matrix multiplications, and inversions,
are implemented using an improved version of the HHL
algorithm [10] that utilizes recent developments in quan-
tum simulation algorithms.

Input : A quantum state |y〉 =
∑M+N

p=M+1 yp|p〉/|y| that
stores the data y, an upper bound (denoted κ) for the
square roots of the condition numbers of FF† and F†F,
the sparseness of F (denoted s) and an error tolerance ǫ.

Output : A quantum state |λ〉 that is approximately pro-
portional to the optimal fit parameters λ/|λ| up to error
ǫ as measured by the Euclidean–norm.

Computational Model : We have a universal quantum
computer equipped with oracles that, when queried
about a non–zero matrix element in a given row, yield
a quantum state that encodes a requested bit of a binary

encoding the column number or value of a nonzero ma-
trix element of F in a manner similar to those in [14]. We
also assume a quantum blackbox is provided that yields
copies of the input state |y〉 on demand.

Query Complexity: The number of oracle queries used is

Õ
(

log(N)(s3κ6)/ǫ
)

, (3)

where Õ notation implies an upper bound on the scaling
of a function, suppressing all sub-polynomial functions.
Alternatively, the simulation method of [15, 16] can be
used to achieve a query complexity of

Õ
(

log(N)(sκ6)/ǫ2
)

. (4)

Analysis of Algorithm— The operators F and F† are
implemented using an isometry superoperator I to repre-
sent them as Hermitian operators on CN+M . The isom-
etry has the following action on a matrix X:

I : X 7→
(

0 X

X† 0

)

. (5)

These choices are convenient because I(F†)|y〉 contains
F†y/|y| in its first M entries. We also assume for sim-
plicity that |I(F†)|y〉| = 1. This can easily be relaxed by
dividing I(F†)|y〉 by |F†y|.
Preparing I(F†)|y〉— The next step is to prepare the

state I(F†)|y〉. This is not straightforward because I(F†)
is a Hermitian, rather than unitary, operator. We im-
plement the Hermitian operator using the same phase
estimation trick that HHL use to enact the inverse of a
Hermitian operator, but instead of dividing by the eigen-
values of each eigenstate we multiply each eigenstate by
its eigenvalue. We describe the relevant steps below. For
more details, see [10].
The algorithm first prepares an ancilla state for a large

integer T that is of order N

|Ψ0〉 =
√

2

T

T−1
∑

τ=0

sin

(

π(τ + 1/2)

T

)

|τ〉 ⊗ |y〉. (6)

It then maps |Ψ0〉 to,
√

2

T

T−1
∑

τ=0

sin

(

π(τ + 1/2)

T

)

|τ〉 ⊗ e−iI(F†)τt0/T |y〉, (7)

for t0 ∈ O(κ/ǫ). We know from work on quantum
simulation that exp(−iI(F†)τt0/T ) can be implemented
within error O(ǫ) in the 2-norm using Õ(log(N)s3t0/T )
quantum operations, if F has sparseness s [17]. Alter-
natively, the method of [15, 16] gives query complex-

ity Õ(log(N)sτt0/(ǫT )). If we write |y〉 =
∑N

j=1 βj |µj〉,
where |µj〉 are the eigenvectors of I(F†) with eigenvalue
Ej we obtain

√

2

T

T−1
∑

τ=0

sin

(

π(τ + 1/2)

T

)

e−iEjτt0/T |τ〉 ⊗ βj |µj〉, (8)
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The quantum Fourier transform is then applied to the
first register and, after labeling the Fourier coefficients
αk|j , the state becomes

N
∑

j=1

T−1
∑

k=0

αk|jβj|k〉|µj〉, (9)

HHL show that the Fourier coefficients are small unless
the eigenvalue Ej ≈ Ẽk := 2πk/t0, and t0 ∈ O(κ/ǫ) is
needed to ensure that the error from approximating the
eigenvalue is at most ǫ. It can be seen using the analysis
in [10] that after re-labeling |k〉 as |Ẽk〉, and taking T ∈
O(N), (9) is exponentially close to

∑N
j=1 βj |Ẽj〉|µj〉.

The final step is to introduce an ancilla system and
perform a controlled unitary on it that rotates the an-

cilla state from |0〉 to
√

1− C2Ẽ2
j |0〉 + CẼj |1〉, where

C ∈ O(maxj |Ej |)−1 because the state would not be
properly normalized if C were larger. The probability of
measuring the ancilla to be 1 is O(1/κ2) since CEj is at
least O(1/κ). O(κ2) repetitions are therefore needed to
guarantee success with high probability, and amplitude
amplification can be used to reduce the number of rep-
etitions to O(κ) [10]. HHL show that either O(1/κ2) or
O(1/κ) attempts are also needed to successfully perform
I(F)−1 depending on whether amplitude amplification is
used.
The cost of implementing I(F†) is the product of the

cost of simulating I(F†) for time κ/ǫ and the number of
repetitions required to obtain a successful result, which
scales as O(κ). The improved simulation method of
Childs and Kothari [17] allows the simulation to be per-
formed in time Õ(log(N)s3κ/ǫ), where s is the sparse-
ness of F; therefore, I(F†)|y〉 can be prepared using
Õ(log(N)s3κ2/ǫ) oracle calls. The cost of performing
the inversion using the simulation method of [15, 16] is
found by substituting s → s1/3/ǫ into this or any of our
subsequent results.
Inverting F†F— We then finish the algorithm by ap-

plying (F†F)−1 using the method of HHL [10]. Note
that the existence of (F†F)−1 is implied by a well-defined
fitting-problem, in the sense that a zero eigenvalue of F†F

would result in a degenerate direction of the quadratic
form (1). The operator F†F ∈ CM×M is Hermitian and
hence amenable to the linear systems algorithm. We do,
however, need to extend the domain of the operator to
make it compatible with |y〉 which is in a Hilbert space
of dimension N + M . We introduce A to denote the
corresponding operator,

A :=

(

F†F 0
0 FF†

)

= I(F)2. (10)

If we define |λ〉 ∈ CN+M to be a state of the form |λ〉 =
∑M

j=1 λj |j〉 up to a normalizing constant, then F†Fλ is
proportional to A|λ〉 up to a normalizing constant. This

means that we can find a vector that is proportional to
the least-squares fit parameters by inversion via

|λ〉 = A−1I(F†)|y〉. (11)

This can be further simplified by noting that

A−1 = I(F)−2. (12)

Amplitude amplification does not decrease the number
of attempts needed to implement A−1 in (11) because
the algorithm require reflections about I(F†)|y〉, which
requires O(κ) repetitions to prepare.
Since amplitude amplification provides no benefit for

implementing A−1, O(κ5) repetitions are needed to im-
plement A−1I(F†). This is a consequence of the fact that
the probability of successfully performing each I(F)−1

is O(1/κ2) and the probability of performing I(F†) is
O(1/κ) (if amplitude amplification is used). The cost of
performing the simulations involved in each attempt is
Õ(log(N)s3κ/ǫ) and hence the required number of ora-
cle calls scales as

Õ
(

log(N)(s3κ6/ǫ)
)

. (13)

Although the algorithm yields |λ〉 efficiently, it may
be exponentially expensive to learn |λ〉 via tomography;
however, we show below that a quantum computer can
assess the quality of the fit efficiently.
2. Estimating Fit Quality— We will now show that

we can efficiently estimate the fit quality E even if M is
exponentially large and without having to determine the
fit-parameters. For this problem, note that due to the
isometry (5) E = ||y〉 − I(F)|λ〉|2. We assume the prior
computational model. We are also provided a desired
error tolerance, ǫ, and wish to determine the quality of
the fit within error δ.

Input : A constant δ > 0 and all inputs required by algo-
rithm 1.

Output : An estimate of |〈y|I(F)|λ〉|2 accurate within er-
ror δ.

Query Complexity:

Õ
(

log(N)
s3κ4

ǫδ2

)

. (14)

Algorithm— We begin by preparing the state |y〉⊗ |y〉
using the provided state preparation blackbox. We then
use the prior algorithm to construct the state

I(F)A−1I(F†)|y〉 ⊗ |y〉 = I(F)−1I(F†)|y〉 ⊗ |y〉, (15)

within errorO(ǫ). The cost of implementing I(F)−1I(F†)
(with high probability) within error ǫ is

Õ
(

log(N)
s3κ4

ǫ

)

. (16)
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The swap test [18] is then used to determine the ac-
curacy of the fit. The swap test is a method that can
be used to distinguish |y〉 and I(F)|λ〉 by performing a
swap operation on the two quantum states controlled by
a qubit in the state (|0〉+ |1〉)/

√
2. The Hadamard oper-

ation is then applied to the control qubit and the control
qubit is then measured in the computational basis. The
test concludes that the states are different if the outcome
is “1”. The probability of observing an outcome of “1”
is (1 − |〈y|I(F)|λ〉|2)/2 for our problem.
The overlap between the two quantum states can be

learned by statistically sampling the outcomes frommany
instances of the swap test. The value of |〈y|I(F)|λ〉|2 can
be approximated using the sample mean of this distribu-
tion. It follows from estimates of the standard deviation
of the mean that O(1/δ2) samples are required to esti-
mate the mean within error O(δ). The cost of algorithm
2 is then found by multiplying (16) by 1/δ2.
The quantity E can be estimated from the output of

algorithm 2 by E ≤ 2(1 − |〈y|I(F)|λ〉|). Taylor series
analysis shows that the error in the upper bound for E
is also O(δ).
There are several important limitations to this tech-

nique. First, if F is not sparse (meaning s ∈ O(poly(N)))
then the algorithm may not be efficient because the quan-
tum simulation step used in the algorithm may not be
efficient. As noted in previous results [14–16], we can
generalize our results to systems where F is non-sparse if
there exists a set of efficient unitary transformations Uj

such that I(F) =
∑

j UjHjU
†
j where each Hj is sparse

and Hermitian. Also, in many important cases (such as
fitting to experimental data) it may not be posible to pre-
pare the initial state |y〉 efficiently. For this reason, our
algorithm is better suited for approximating the output
of quantum devices than the classical outputs of exper-
iments. Finally, algorithm 2 only provides an efficient
estimate of the fit quality and does not provide λ; how-
ever, we can use it to determine whether a quantum state
has a concise representation within a family of states. If
algorithm 2 can be used to find such a representation,
then the parameters |λ〉 can be learned via state tomog-
raphy. We discuss this approach below.
3. Learning λ– This method can also be used to find a

concise fit function that approximates y. Specifically, we
use statistical sampling and quantum state tomography
to find a concise representation for the quantum state
using M ′ parameters. The resulting algorithm is efficient
if M ′ ∈ O(polylog(N)).

Input : As algorithm 2, but in addition with an integer
M ′ ∈ O(polylog(M)) that gives the maximum number
of fit functions allowed in the fit.

Output : A classical bit string approximating |λ〉 to pre-
cision ǫ, a list of the M ′ fit functions that comprise |λ〉
and |〈y|I(F)|λ〉|2 calculated to precision δ.

Computational Model : As algorithm 1, but the oracles
can be controlled to either fit the state to all M fit func-
tions or any subset consisting of M ′ fit functions.

Query Complexity:

Õ
(

log(N)s3
(

κ4

ǫδ2
+

M ′2κ6

ǫ3

))

.

Algorithm— The first step of the algorithm is to pre-
pare the state |λ〉 using algorithm 1. The state is then
measured O(M ′) times and a histogram of the measure-
ment outcomes is constructed. Since the probability of
measuring each of these outcomes is proportional to their
relevance to the fit, we are likely to find the M ′ of the
most likely outcomes by sampling the state O(M ′) times.
After choosing the M ′ most significant fit functions,

we remove all other fit functions from the fit and pre-
pare the state |λ〉 using the reduced set of fit functions.
Compressed sensing [19–21] is then used to reconstruct
|λ〉 within O(ǫ) error. The idea of compressed sensing
is that a low–rank density matrix can be uniquely de-
termined (with high probability) by a small number of
randomly chosen measurements. A convex optimization
routine is then used to reconstruct the density matrix
from the expectation values found for each of the mea-
surements.
Compressed sensing requiresO(M ′ log(M ′)2) measure-

ment settings to reconstruct pure states, and observation
1 of [19] implies that O(M ′/ǫ2) measurements are needed
for each setting to ensure that the reconstruction error is
O(ǫ); therefore, O(M ′2 log(M ′)2/ǫ2) measurements are
needed to approximate the state within error O(ǫ). The
total cost of learning |λ〉 is the number of measurements
needed for tomography multiplied by the cost of prepar-
ing the state and thus scales as

Õ
(

log(N)
s3M ′2κ6

ǫ3

)

, (17)

which subsumes the cost of measuring |λ〉 to find the
most significant M ′ fit functions.
Finally, we measure the quality of the fit using algo-

rithm 2. The total cost of estimating |λ〉 and the fit
quality is thus the sum of (17) and (16), as claimed.
Remark : The quality of the resulting fit that is yielded

by this algorithm depends strongly on the set of fit func-
tions that are used. If the fit functions are chosen well,
fewer than M ′ fit functions are used to estimate |y〉 with
high fidelity. Conversely, O(N) fit functions may be
needed to achieve the desired error tolerance if the fit
functions are chosen poorly. Fortunately, the efficiency
of algorithm 2 allows the user to search many sets of pos-
sible fit functions for a concise and accurate model within
a large set of potential models.
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