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We study the glued-trees problem of Childs, et. al. [1] in the adiabatic model of quantum com-
puting and provide an annealing schedule to solve an oracular problem exponentially faster than
classically possible. The Hamiltonians involved in the quantum annealing do not suffer from the so-
called sign problem. Unlike the typical scenario, our schedule is efficient even though the minimum
energy gap of the Hamiltonians is exponentially small in the problem size. We discuss generaliza-
tions based on initial-state randomization to avoid some slowdowns in adiabatic quantum computing
due to small gaps.
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Quantum annealing is a powerful heuristic to solve
problems in optimization [2, 3]. In quantum computing,
the method consists of preparing a low-energy or ground
state |ψ〉 of a quantum system such that, after a sim-
ple measurement, the optimal solution is obtained with
large probability. |ψ〉 is prepared by following a particu-
lar annealing schedule, with a parametrized Hamiltonian
path subject to initial and final conditions. A ground
state of the initial Hamiltonian is then transformed to
|ψ〉 by varying the parameter slowly. In contrast to
more general quantum adiabatic state transformations,
the Hamiltonians along the path in quantum annealing
are termed stoquastic and do not suffer from the so-called
numerical sign problem [4]: for a specified basis, the off-
diagonal Hamiltonian-matrix entries are nonpositive [5].
This property is useful for classical simulations [3].

A sufficient condition for convergence of the quantum
method is given by the quantum adiabatic approxima-
tion. It asserts that, if the rate of change of the Hamil-
tonian scales with the energy gap ∆ between their two
lowest-energy states, |ψ〉 can be prepared with controlled
accuracy [6, 7]. Such an approximation may also be nec-
essary [8]. However, it could result in undesired over-
heads if ∆ is small but transitions between the lowest-
energy states are forbidden due to selection rules, or if
transitions between lowest-energy states can be exploited
to prepare |ψ〉. The latter case corresponds to the anneal-
ing schedule in this Letter. It turns out that the relevant
energy gap for the adiabatic approximation in these cases
is not ∆ and can be much bigger.

Because of the properties of the Hamiltonians, the an-
nealing can also be simulated using probabilistic classi-
cal methods such as quantum Monte-Carlo (QMC) [9].
The goal in QMC is to sample according to the distri-
bution of the ground state, i.e. with probabilities com-
ing from amplitudes squared. While we lack of neces-
sary conditions that guarantee convergence, the power
of QMC is widely recognized [3, 9, 10]. In fact, if the
Hamiltonians satisfy an additional frustration-free prop-
erty, efficient QMC simulations for quantum annealing
exist [11, 12]. An important open question is whether
a quantum-computer simulation of general quantum an-
nealing processes can ever be done using substantially

less resources than QMC or other classical simulation.
In this Letter, we answer this question in the affirma-

tive: We provide an oracular problem and give a simple
and natural quantum-annealing schedule that, on a quan-
tum computer, prepares a quantum state |ψ〉 encoding
the solution. The time required to prepare |ψ〉 is poly-
nomial in the problem size, herein poly(n). The oracular
problem was first introduced in Ref. [1] in the context of
quantum walks, where it was also shown that no classi-
cal method can give the solution using poly(n) number of
oracle calls. Thus, our result places a limit on the power
of classical methods that simulate quantum evolutions.

We do not answer the general question of existence
of efficient classical simulations when ∆ is 1/poly(n).
The annealing schedule we provide is not intended to
follow the ground state in the path; diabatic transitions
to the closest (first-excited) eigenstate are allowed. Nev-
ertheless, the system (almost) remains in the subspace
spanned by these two states at all times. There are re-
gions in the path where ∆ ∝ exp(−n). We induce transi-
tions in that subspace by choosing an annealing rate that
is much larger than ∆, i.e. at 1/poly(n) rates. Contrary
to the typical case, such transitions are useful here. They
guarantee the preparation of |ψ〉 due to a symmetry ar-
gument: The same type of transition that transforms the
ground into the first-excited state, later transforms the
first-excited into the final ground state |ψ〉. The extent
of this argument goes beyond the problem considered in
this Letter and may be used as an alternative for those
problems in which the quantum adiabatic algorithm fails
due to small gaps.

In more detail, the oracular problem from Ref. [1] is
as follows. We are given an oracle that consists of the
adjacency matrix A of two binary trees that are ran-
domly glued (by a random cycle) as in Fig 1. There are
N ∈ O(2n) vertices named with randomly chosen 2n-bit
strings. The oracle outputs the names of the adjacent
vertices on any given input vertex name. There are two
special vertices, ENTRANCE and EXIT – the roots of
the binary trees. They can be identified because they are
the only vertices of degree two in the graph. The Glued-
Trees problem is: Given an oracle A for the graph and the
name of the ENTRANCE, find the name of the EXIT.
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FIG. 1: Two binary trees of depth n = 4 glued randomly. The
number of vertices is N = 2n+2 − 2. Each vertex is labeled
with a randomly chosen 2n-bit string. j is the column number.

An efficient method based on quantum walks can solve
this problem with constant probability, while no classi-
cal algorithm that uses less than a subexponential (in
n) number of oracles exists [1]. Still, a quantum anneal-
ing method that uses simple and stoquastic Hamiltonians
remained unknown. We will then present a quantum an-
nealing approach that efficiently outputs the name of the
EXIT with arbitrarily high probability, c.f. [7, 13].

We assume a Hamiltonian version of the oracle so that
evolutions under A can be implemented. We also al-
low for evolutions under H0 and H1, these being the di-
agonal Hamiltonians that distinguish the ENTRANCE
and EXIT, respectively. Such evolutions can be real-
ized efficiently [14], i.e. using O(T ) oracles for evolution
time T > 0. We let a(V ) ∈ {0, 1}2n be the name of
vertex V . Then, H0 |a′〉 = −δa(ENTRANCE),a′ |a′〉 and
H1 |a′〉 = −δa(EXIT),a′ |a′〉, so that their ground states
encode a(ENTRANCE) and a(EXIT), respectively. The
Hamiltonian path for the annealing will consist of a spe-
cific interpolation involving H0, A, and H1.

The (orthonormal) states

|colj〉 =
1√
Nj

∑
i∈jth column

|a(i)〉 . (1)

will be useful [1]. These are uniform-superposition states
over all states labeled by the names of vertices at the
j−th column. Nj = 2j for 0 ≤ j ≤ n and Nj = 22n+1−j

for n + 1 ≤ j ≤ 2n + 1; see Fig. 1. In particular,
|col0〉 = |a(ENTRANCE)〉 and |col2n+1〉 = |a(EXIT)〉.
The subspace spanned by {|colj〉}0≤j≤2n+1 is then in-
variant under the action of A, H0, and H1. In the basis
determined by Eqs. (1), A has non-zero matrix elements
in its first off-diagonals only. For simplicity, we redefine
A←

√
2A so that the matrix elements are

〈colj |A |colj+1〉 =

{√
2 j = n

1 otherwise.
(2)

Also, 〈colj |H0 |colj〉 = −δj,0 and 〈colj |H1 |colj〉 =
−δj,2n+1.
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FIG. 2: The three lowest eigenvalues of H(s) in the subspace
{|col〉j}j , for α = 1/

√
8 and n = 10. ∆jk = λj−λk is the gap

between the j-th and k-th eigenstates, respectively. We divide
the evolution in five stages according to s1, s2, s3, and s4 [see
text after Eq. (5)], with s1 < s× = α/

√
2 = 0.25 < s2 and

s3 = 1− s2 < 1− s× < s4 = 1− s1. Inside [s1, s2] and [s3, s4],
the gap ∆10 becomes exponentially small in n. Elsewhere,
∆10 is only polynomially small in n. Brown arrows 1 → 2
and 3 → 4 depict level transitions for an annealing rate in
which ṡ(t) ∝ 1/poly(n).

We choose the Hamiltonian path

H(s) = (1− s)αH0 − s(1− s)A+ sαH1 (3)

that interpolates between H0 and H1 for 0 ≤ s ≤ 1.
The parameter α is independent of n and satisfies 0 <
α < 1/2. H(s) corresponds to a perturbed tight-binding
model in physics. We will show that annealing at a
rate ṡ(t) ∝ 1/poly(n), the resulting evolution transforms
|a(ENTRANCE)〉 to a state that has arbitrarily high
overlap with |a(EXIT)〉.
Spectral properties— We use the spectral properties
of H(s) to prove the efficiency of the quantum method;
particularly relevant are the spectral gaps. The following
analysis is valid if we restrict to the invariant subspace
spanned by {|colj〉}j . Figure 2 shows the three lowest
eigenvalues of H(s), obtained numerically, in this sub-
space. This suggests a particular eigenvalue behavior.
We can analytically study the Hamiltonians by propos-
ing the ansatz |φ〉 =

∑
j γj |colj〉, with

γj = aeipj + be−ipj , 0 ≤ j ≤ n , (4)

γj = ceip(2n+1−j) + de−ip(2n+1−j) , n+ 1 ≤ j ≤ 2n+ 1 ,

and p ∈ C. The eigenvalue condition H |φ〉 = λ |φ〉 and
〈φ|φ〉 = 1 allow us to find expressions for a, b, c, d, and
λ. The resulting eigenvalues are λ = −2s(1 − s) cos p.
We provide a detailed analysis of the spectrum in Supp.
Mat. and present only the relevant results here. Because
of the s ↔ (1 − s) symmetry, it suffices to analyze the
parameter region s ∈ [0, 1/2].

In the following, x ≈θ y if |x − y| ≤ θ and θ ≥ 0.
When n → ∞, the two lowest eigenvalues cross, or be-
come equal, at s = s× = α/

√
2. Different eigenvalue
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behavior is obtained at both sides of s×. For n < ∞
and 0 ≤ s ≤ s×, the spectral gap between the two lowest
eigenvalues is

∆10(s) = λ1(s)− λ0(s)

≈ε −(1− s)
(

3s√
2
− α2 + s2

α

)
, (5)

with ε ∈ O(2−n/2). The eigenvalue crossing is avoided
for n < ∞ and ∆10(s) is exponentially small in n near
s×. This finite-size gap behavior is typical for avoided
crossings in which eigenstates rapidly change as a func-
tion of s. In addition, Eq. (5) gives ∆10(s) ≥ c/n3 for
0 ≤ s ≤ s1 = s× − δ and s2 = s× + δ ≤ s ≤ 1/2, with
δ ∈ Ω(1/n3).

The second excited state has an eigenvalue that corre-
sponds to p ≈ν π/(n+1), with ν ∈ O(1/(n+1)2). These
eigenvalues reflect the relationship between H(s) an the
tight-binding model. The spectral gap between the first
and second excited state for 0 ≤ s ≤ α is then

∆21(s) = λ2(s)− λ1(s)

≈ε/2+ν −s(1− s)
(

cos

(
π

n+ 1

)
− 3√

2

)
. (6)

In particular, ∆21(s) ∈ Ω(1) in the region s1 ≤ s ≤ α.
For α ≤ s ≤ 1/2, the second eigenvalue also corre-

sponds to p ≈ν π/(n + 1). To bound the gap with the
third eigenvalue, a more detailed analysis that approxi-
mates p at order 1/(n+ 1)2 is carried in the Supp. Mat..
It results in ∆21(s) ≥ c′/n3, for some c′ > 0 (see Fig. 2).
Annealing schedules— We use the following adiabatic
approximation from Refs. [6]: Let the initial state be
an eigenstate of H(s0) and ∆(s) the spectral gap to
the nearest (non-degenerate) eigenstate in some region
s0 ≤ s ≤ sf . Then, an annealing rate of ṡ(t) ∝ ε∆2(s) or
smaller suffices to prepare the eigenstate of H(sf ) at er-

ror amplitude smaller than
√
ε(sf − s0); i.e. the overlap

between the evolved state and the eigenstate is at least√
1− ε(sf − s0). (Better error scaling is possible [7, 13].)

We assume that 0 < ε � 1, and that ε is an arbitrary
and small constant independent of n.

To prove that ṡ(t) ∝ ε/n6 suffices to solve the
Glued-Trees problem with low error, we split the evo-
lution according to [0, 1] =

⋃5
i=1 Vi, with V1 = [0, s1),

V2 = [s1, s2), V3 = [s2, s3), V4 = [s3, s4), and V5 =
[s4, 1]. The values of si were determined previously; see
Fig. 2. We denote |φ0(s)〉 and |φ1(s)〉 the instantaneous
ground and first-excited states, respectively. |φ0(0)〉 =
|a(ENTRANCE)〉 and |φ0(1)〉 = |a(EXIT)〉 encodes the
solution. |φ0(s)〉 is different for different values of s.
Then, due to the gap bounds and the adiabatic approxi-
mation, the following transformations occur:

|φ0(0)〉 →√εs1 |φ0(s1)〉 , (7)

|φ1(s2)〉 →√
ε(s3−s2)

|φ1(s3)〉 ,

|φ0(s4)〉 →√
ε(1−s4)

|φ0(1)〉 ,

where →x indicates that the transformation occurred at
error amplitude of order x.

Because ∆21(s) ∈ Ω(1) for s ∈ V2, transformations
between the ground or first-excited state and the sec-
ond excited state occur with amplitude smaller than

√
ε.

Thus, all relevant transitions in V2 occur in the manifold
spanned by {|φ0(s)〉 , |φ1(s)〉}. For our annealing rate,
the following diabatic transformations occur with low er-
ror amplitude (see below):

|φ0(s1)〉 → |φ1(s2)〉 , (8)

|φ1(s3)〉 → |φ0(s4)〉 .

To show that the approximation errors for Eqs. (8) are
small, we introduce the state |u〉 – the uniform superpo-
sition over all vertex names:

|u〉 =
1√
N

∑
i∈graph

|a(i)〉 =

2n+1∑
j=0

√
Nj
N
|colj〉 . (9)

Here, Nj = 2j for 0 ≤ j ≤ n and Nj = 22n+1−j for
n + 1 ≤ j ≤ 2n + 1. Interestingly, |u〉 is almost an

eigenstate for all s: H(s) |u〉 ≈ε/2 −(s(1 − s)3/
√

2) |u〉
and ε ∈ O(2−n/2) – see Supp. Mat.. We define
f(t) = | 〈u|U(t) |u〉 |2, where U(t) is the evolution op-
erator and f(0) = 1. Schrödinger’s equation yields

ḟ(t) = −i 〈u|H(s(t))U(t) |u〉 〈u|U†(t) |u〉 + c.c. ≈ε 0. If
T ∈ O(n3/ε) is the time needed to change s from s1 to s2
with our annealing schedule (while |s2 − s1| ∈ Ω(1/n3)),
we have f(T ) ≈ε′ 1 for ε′ ∈ O(2−n/2n3/ε). In addition,
| 〈u|φ1(s1)〉| ≈ε′ 1 and | 〈u|φ0(s2)〉| ≈ε′ 1 – see Supp.
Mat.. This results in | 〈φ1(s1)|U(T ) |φ0(s2)〉 |2 ≈5ε′ 1.

The transformation |φ1(s1)〉 →√5ε′ |φ0(s2)〉 then oc-
curs. Moreover, because U(t) is unitary, we also have
|φ0(s1)〉 →√5ε′ |φ1(s2)〉 and, from symmetry arguments,
|φ1(s3)〉 →√5ε′ |φ0(s4)〉. These transitions of levels are
shown in Fig. 2. Together with Eqs. (7), they prove
the success of our quantum annealing method. When
2−n/2n3 � ε2, we have ε′ � ε and the overall error
amplitude is dominated by that of the adiabatic approx-
imation in this case. This error is of order

√
ε� 1.

In Fig. 3 we show the overlaps between U(t) |φ0(0)〉 and
the instantaneous ground and first-excited states, respec-
tively, for our choice of ṡ(t). It provides evidence for the
diabatic transition among the two low energy levels.
Initial-state randomization: A generalization— In
the Glued-Trees problem, all the interesting quantum dy-
namics occurred in the manifold given by the ground and
first-excited states only. For more general problems, how-
ever, the relevant manifold may contain more eigenstates
(e.g., due to initial ground state degeneracy). In this Sec.
we build a randomization method that allow us to pre-
pare the final ground state in these problems, with large
probability, provided that some assumptions are met.

To this end, we consider again the Glued-Trees prob-
lem and the region s ∈ [χ, 1−χ]. Here, χ ∈ O(1/n3) and
∆21(s) ≥ c′/n3 for all s in the region – see Fig. 2. Then,
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FIG. 3: Overlap of the evolved state U(t) |a(ENTRANCE)〉
with the instantaneous ground (blue line) and first-excited
(red line) states, |φ0(s(t))〉 and |φ1(s(t))〉, as a function of
time. In this case, n = 40, α = 1/

√
8, and s(t) = t/10000.

We performed the simulation in the column subspace.

if we randomly prepare |φ0(χ)〉 or |φ1(χ)〉 and anneal us-
ing the schedule ṡ(t) ∝ ε/n6, the highly excited levels are
effectively decoupled from the evolution. It implies that,
when s = 1−χ, the evolved state is (almost) the uniform
combination of |φ0(1− χ)〉 and |φ1(1− χ)〉. Because χ
is small for large n, and since |φ1(χ)〉 ≈ |u〉, the method
also works if the initial state is sampled randomly from
{|a(ENTRANCE)〉 , |u〉}. Such state preparation can be
done efficiently. An advantage is that a full analysis of the
low-energy spectrum is not needed to prove the success
of the randomization method (at the expense of reducing
the error probability on the state preparation to 1/2).

The randomization method can be generalized as fol-
lows. It is well-known that efficient quantum adiabatic
transport within k ≥ 2 eigenstates is possible if these
eigenstates are at gaps 1/poly(n) from the rest [6, 7].
Then, if uniform sampling from the k initial eigenstates
can be done efficiently, any of the final k eigenstates can
be prepared efficiently with probability of order 1/k. If
k is not too big, the method works regardless of whether
the k lowest eigenvalues have small gaps or cross.

General Hamiltonians will not satisfy the requirements
on the gaps, but some physical models do. An example is

the one-dimensional spin-1/2 Ising model in a transverse
field. As the Ising coupling J is changed from 0 to J � 1,
the two lowest eigenvalues have a spectral gap that de-
creases exponentially with the system size n. However,
the third eigenvalue is always at a distance 1/poly(n)
from the two lowest ones. This property is common for
systems that undergo through a critical point and break
a discrete symmetry. At the critical point, the eigenval-
ues satisfy a dispersion relation E(q) ∝ qz, where z is
the dynamical exponent and q is the momentum. The
values of q differ by multiples of 2π/n so that the gaps
are 1/poly(n) in that point. At the phase with broken
symmetry, only a few low eigenvalues are separated at
constant gaps from the rest – see [16] for more details.

Discussion— We provided an oracular problem that
can be solved efficiently by quantum annealing whereas
exponential time is required for any classical method.
We described why our algorithm works even when the
gaps are exponentially small and showed a generaliza-
tion of the method based on initial-state randomization.
While results on efficient adiabatic quantum simulations
of quantum circuits could also be used to prove an expo-
nential quantum speedup in this case [15], the resulting
Hamiltonians are rather complex and not stoquastic. The
construction in Ref. [15] assumes a polynomially small
gap; whether this assumption is necessary or not in gen-
eral needs to be analyzed on a case by case basis.
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