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We introduce an order parameter for symmetry-protected phases in one dimension which allows to directly
identify those phases. The order parameter consists of string-like operators and swaps, but differs from con-
ventional string order operators in that it only depends on the symmetry but not on the state. We verify our
framework through numerical simulations for the SO(3) invariant spin-1 bilinear-biquadratic model which ex-
hibits a dimerized and a Haldane phase, and find that the order parameter not only works very well for the
dimerized and the Haldane phase, but it also returns a distinct signature for gapless phases. Finally, we discuss
possible ways to measure the order parameter in experiments with cold atoms.

Symmetries play an essential role almost everywhere in
physics. A prominent example is Landau’s theory of phases:
Different phases are classified by whether the state of the sys-
tem obeys or breaks the symmetries of the Hamiltonian. In
turn, this gives rise to local order parameters which can be
measured to determine which phase a system is in. This pic-
ture has recently been challenged by the discovery of topolog-
ically ordered phases: They are not associated to the breaking
of any local symmetry, and therefore there is no local order
parameter which can be used to detect topological phases.

Topological order occurs only in two and higher dimen-
sions, since one-dimensional gapped spin systems exhibit
only a single phase. However, the situation in one dimension
changes if we impose symmetries—they do not only give rise
to Landau-type phases which are distinguished by local or-
der parameters, but also to distinct symmetry-protected phases
which cannot be distinguished by any local order parameter
(and might thus be called topological), yet which are pro-
tected (i.e., separated) by the presence of the symmetry. The
most prominent example for a non-trivial symmetry protected
phase is the Haldane phase, which contains the spin-1 AKLT
model and likely the spin-1 Heisenberg model and which is
e.g. protected by SO(3) symmetry [1]. More recently, it has
been realized that these phases differ by the way in which the
symmetry acts across blocks of the system, i.e., on the entan-
glement between blocks. This can be understood in a partic-
ularly natural way in the framework of Matrix Product States
(MPS), which provide the appropriate framework for the de-
scription of gapped one-dimensional systems, and which al-
low to directly access the entanglement between blocks [1–3].
In particular, it has been found that the action of the symme-
try on the entanglement between blocks, and thus the different
symmetry protected phases, are distinguished by the inequiv-
alent projective representations of the symmetry group, such
as integer and half-integer spin representations in the case of
the rotation group [1, 2].

Symmetry protected phases such as the spin-1 AKLT chain
do not exhibit long-range order, this is, non-decaying correla-
tions between distant sites, which could otherwise replace lo-

cal order parameters. However, they do exhibit what is known
as string order [4, 5]: Measuring a string of identical oper-
ators with distinct endpoints gives correlations which do not
depend on the length of the string, despite the absence of con-
ventional long-range order. This might suggest that string or-
der parameters can be used to distinguish different symmetry-
protected phases. However, the presence of string order is
rather a signature of the symmetry itself than of the phase of
the system under that symmetry, and string order parameters
need to be tailored to the system under consideration; indeed,
one can easily find examples of systems in different phases
which are susceptible to the same string order parameter, and
vice versa [6]. Therefore, string order parameters are not well
suited as order parameters for symmetry protected phases.

In this paper, we propose an order parameter which allows
to distinguish symmetry-protected phases by directly measur-
ing the way in which the physical symmetry acts on the en-
tanglement between blocks. Unlike string order parameters,
it is independent of the state under consideration and only de-
pends on the symmetry itself. We demonstrate our approach
for the SO(3) symmetry by numerically studying the spin–
1 bilinear–biquadratic model (see, e.g., [7]), where we find
that the order parameter, though defined for asymptotically
large blocks, converges very well for small lengths. We also
find that while the order parameter is designed to work for the
gapped phases of the system, namely the trivial and the Hal-
dane phase, it in fact also exhibits a distinct signature for the
gapless critical and ferromagnetic phase of the model. Finally,
we discuss how one could in principle experimentally imple-
ment a measurement of this order parameter, in particular with
atoms in optical lattices.

Let us start by explaining the structure of one-dimensional
gapped phases under symmetries; for simplicity, we will focus
on systems with unique ground states. As such phases differ
by their long-range properties, we first describe the structure
of such states on large length scales, and in particular their
renormalization group (RG) fixed points. Due to the absence
of topological entanglement in one dimension, at the RG fixed
point of 1D systems each site independently shares entangle-
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FIG. 1. Large-scale structure of 1D quantum states. The renormal-
ization fixed point consists of virtual entangled pairs with Schmidt
spectrum λ between adjacent sites, which are mapped by an isome-
try S onto the physical system. If S maps onto L sites of the original
state, this ansatz approximates any ground state of a gapped Hamil-
tonian to an accuracy exponential in L.

ment with its two adjacent sites. This is, the overall state is of
the form

|Ψ〉 = S⊗N |λ〉⊗N . (1)

Here, |λ〉 =
∑
λi|i, i〉 is a “virtual” entangled state between

adjacent sites with Schmidt spectrum λ = (λ1, . . . , λD), and
S is an isometry mapping the virtual entangled states into the
physical system, acting jointly on the halves of two adjacent
|λ〉 states, as depicted in Fig. 1. In the framework of Matrix
Product States (MPS), which are obtained by replacing the
isometry S in Fig. 1 by an arbitrary linear map, and which
form the appropriate class of states for the description of one-
dimensional gapped quantum systems [8–10], it can be proven
rigorously that any ground state of a gapped 1D system con-
verges exponentially to the fixed point of Eq. (1) [11]; thus,
Eq. (1) can equally well be understood as an approximation to
any gapped 1D system, where S embeds the virtual entangled
pairs into a block of L physical sites each, with an accuracy
exponential in L. (In this case, S can be understood as the RG
transformation on a block of length L).

Now consider a quantum system with an on-site linear sym-
metry ug , u⊗Ng |Ψ〉 = |Ψ〉, where ug is a representation of the
symmetry group G, uguh = ugh. Under renormalization, the
symmetry action transforms to the action Ug on the renormal-
ized sites. (In particular, if blocking L sites, Ug = u⊗Lg .) In
the representation of Eq. (1) and Fig. 1, this symmetry can
be understood as an effective symmetry Ûg = S−1UgS act-
ing on the virtual entangled pairs. Note that Ûg forms again
a linear unitary representation of G, as Ug commutes with
SS† [3]. It can be shown that the virtual action of the sym-
metry Ûg always decomposes as Ûg = Vg ⊗ V̄g , where Vg
and V̄g act on the left and the right entangled state, respec-
tively [6]. Moreover, Λ :=

∑
λi|i〉〈i| commutes with V̄g [3],

so that (V̄g ⊗ Vg)|λ〉 = |λ〉.
Since Ûg = Vg ⊗ V̄g , and ÛgÛh = Ûgh, it follows that Vg

forms a projective representation, VgVh = eiω(g,h)Vgh. Here,
ω(g, h) is a 2-cocycle, i.e., it satisfies ω(g, hk) + ω(h, k) =
ω(g, h) + ω(gh, k) mod 2π. As Vg is only defined up to its
phase (and up to a similarity transform), we have a gauge de-
gree of freedom Vg ↔ eiφgVg which induces an equivalence
relation ω(g, h) ∼ ω(g, h) + φg + φh − φgh mod 2π of 2-
cocycles, and thus equivalence classes of projective represen-
tations. These equivalence classes form a group isomorphic
to the second cohomology group H2(G,U(1)), and label the
inequivalent projective representations of the symmetry group

FIG. 2. Illustration of the measurement Eq. (2) used to determine
phases under SO(3) symmetry (with shorthand Z for Vz , etc.). By
following the loops created by the operator and the entangled states,
it can be easily checked that the diagram evaluates to E(Ψ), Eq. (3);
note that operators traversed downwards have to be transposed.

G. For the rotation group SO(3), e.g., the inequivalent projec-
tive representations are the integer and half-integer spin repre-
sentations, respectively. It turns out that the equivalence class
of the projective representation Vg , which describes the ac-
tion of the symmetry on the virtual degrees of freedom, is
exactly what labels different phases in the presence of sym-
metries [2, 3].

In order to detect different symmetry protected phases, we
therefore need a measurement which allows us to determine
the equivalence class of the projective representation with
which the symmetry acts on the entanglement between blocks.
However, the problem is that while we know Ug , it is im-
possible to infer sufficient information about Vg from it—to
do so we would have to know the transformation S, which
would require full tomography of the state [12]. Fortunately,
we do not need detailed knowledge of Vg , since we only want
to know to which equivalence class of projective representa-
tions it belongs. For this purpose, it is sufficient to compute
certain gauge invariant quantities which give access to the
gauge invariant universal signature of ω(g, h): For instance,
for SO(3) symmetry, one such quantity is VzVxV †z V

†
x , where

x, z ∈ SO(3) denote π rotations about the x and the z axis: It
is +11 for integer spin representations and −11 for half-integer
spin representations of SO(3), respectively, and does not de-
pend on the gauge. (See Supplementary Material, Sec. A, for
other groups.) Thus, if we were able to measure such an in-
variant for a given state, we would be able to determine the
symmetry protected phase the system is in. Different from
determining Vg itself, this invariant can be determined with-
out any information about S, by measuring a suitable operator
such as

E(Ψ) := 〈Ψ|(Uz ⊗ Uz ⊗ 11)F13(Ux ⊗ Ux ⊗ 11)|Ψ〉 , (2)

where F13 swaps the first and the third site. [Equivalently,
E(Ψ) = 〈Ψ|F13UxUyUz|Ψ〉.] If one expresses this measure-
ment diagrammatically using that Ûg = Vg ⊗ V̄g , cf. Fig. 2, it
is straightforward to check that

E(Ψ) = tr[VzVxV
†
z V
†
xΛ4] tr[Λ4] , (3)

and its sign thus allows to determine the phase of |Ψ〉. (Recall
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FIG. 3. Order parameter EL for the bilinear-biquadratic spin-1
model, Eq. (4), as a function of θ, for different estimator lengths
L. The inset shows the normalized order parameter ÊL. Note that
−1/4 ≤ E ≤ 1 from the minimal dimension of the correspond-
ing representations. E = −1/4 is attained at the ALKT point
(θ/π ≈ 0.1024).

that Λ commutes with Vg .) Note that by omitting the U ’s in
Eq. (2), one can measure N (Ψ) := tr[Λ4]2, and that the ratio
Ê(Ψ) := E(Ψ)/N (Ψ) = ±1 yields a normalized quantity
which distinguishes the trivial from the Haldane phase. (See
Supplementary Material, Sec. B, for how to measure general
gauge invariant quantities.)

The preceding discussion was concerned with renormaliza-
tion fixed points, i.e., states of the form Eq. (1). However,
we can evaluate the same quantity for an arbitrary quantum
state, by replacing Ux and Uz by strings of local symmetry
operators ux and uz , i.e., Ug = u⊗Lg . For ground states of
gapped Hamiltonians, we expect it to converge exponentially
fast to the value at the renormalization fixed point; this can be
proven rigorously in the framework of Matrix Product States,
cf. Supplementary Material, Sec. C.

In order to test the applicability of the order parameter, we
have performed numerical simulations for the spin-1 bilinear-
biquadratic Heisenberg chain (cf., e.g., [7] and references
therein)

H(θ) = cos θ
∑
i

Si · Si+1 + sin θ
∑
i

(Si · Si+1)2 . (4)

This model is SO(3) invariant and exhibits both possible
gapped phases under rotational symmetry: A dimerized phase
for −3π/4 < θ < −π/4 (with integer spin representations
Vg and thus topologically trivial), and a Haldane phase for
−π/4 < θ < π/4 (with half-integer representations Vg and
thus topologically non-trivial).

The simulations have been carried out using infinite Matrix
Product States (iMPS) [13] with sites blocked in pairs, using
the time-dependent variational principle [14]. The results for
the order parameter EL as a function of θ/π are plotted in
Fig. 3 for different length L (L refers to the length of a sin-
gle block in Fig. 2), and for D = 32; the inset shows the
normalized ÊL. We find that EL converges quickly, with its
sign correctly distinguishing the dimerized phase (+1) from
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FIG. 4. Convergence analysis. a) Normalized order parameter ÊL
for θ/π = −0.62 and −0.63. Initially, both converge to 1 exponen-
tially with similar exponent, but for θ/π = −0.62, the convergence
is not perfect as D is incommensurate with the representation of the
symmetry. b) Algebraic decay in the critical phase. After correcting
for the exponential decay from the iMPS approximation and oscilla-
tions, we find that the estimator goes to zero algebraically. For the
fit, we have only used L with mod(L, 3) 6= 0.

the Haldane phase (−1). Deviations from this behavior can be
observed at the phase transitions around θ/ = ±π/4, as well
as in the dimerized phase close to θ/π = −3π/4, a regime in
which the possible existence of a “spin-nematic phase” is un-
der ongoing debate (see, e.g., [7]). Simulations with different
D give similar results, except that the width of the transition
regions between the phases decreases with increasing D.

A closer analysis of the data reveals that inside both phases,
EL converges exponentially with a length scale essentially
equal to the correlation length (deviation below 2%). How-
ever, for many values of θ this behavior is only seen on inter-
mediate length scales (typically up to L ≈ 30 . . . 40), while at
larger scales, EL tends to zero. This can be understood as fol-
lows: Finding the optimal MPS approximation with a given
D corresponds to keeping the D largest values in the Schmidt
spectrum λ of the state. As [Λ, Vg] = 0, the degeneracies in
the Schmidt spectrum correspond to the irreducible represen-
tations of SO(3) which appear in Vg . If the truncation does not
respect these degeneracies (this depends on the ordering of the
irreps in the Schmidt spectrum and thus on the point θ in the
phase), the resulting iMPS will not any more be exactly SO(3)
invariant, which causes EL to converge to zero. For the data
reported in Fig. 3 with D = 32, we find perfect convergence
for θ/π = −0.69 . . .−0.63 and θ/π = −0.22 . . .−0.10. In
Fig. 4a, we compare the two cases for two adjacent points in
the dimerized phase.

Beyond the dimerized and the Haldane phase, the bilinear-
biquadratic model also exhibits two gapless phases. Firstly, a
ferromagnetic phase for π/2≤ θ ≤ 5π/4 with product ground
states |φ〉⊗N ; there, EL = (〈φ|ux|φ〉〈φ|uy|φ〉〈φ|uz|φ〉)L con-
verges to zero exponentially in L. Secondly, there is a criti-
cal phase in the regime π/4 ≤ θ < π/2 [7] which we have
included in our simulations, cf. Fig. 3. The results for this re-
gion should be taken with care, as MPS perform considerably
worse in describing the ground states of critical systems, and
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in particular cannot exactly reproduce algebraically decaying
correlations. Analyzing the behavior of the order parameter
in the critical regime, we find a dominating exponential de-
cay due to the fact that D is incommensurate with the sym-
metry, which is superimposed with an oscillation due to the
2π/3 periodicity of the critical phase [7], αL cos(ωL). The
parameters α and ω can be extracted from the MPS transfer
operator, and we find that after correcting for these effects,
ÊL/(αL cos(ωL)) (plotted in Fig. 4b for θ = 0.47) exhibits
an algebraic decay to zero, with an exponent which varies be-
tween 0.41 and 0.44 in the critical phase. The results on the
exponent should be taken with particularly great care, as they
depend on the choice of data points fitted, and the algebraic
decay observed is in fact a sum of exponentials; yet, we be-
lieve that our results provide substantial evidence for an alge-
braically vanishing order parameter in the critical phase.

So far, we have shown that the order parameter E(Ψ) can be
used as a theoretical tool to determine the phases of 1D spin
chains. Now we will show that, at least in principle, it can
also be experimentally determined by performing few mea-
surements (without the need of carrying out a full tomogra-
phy). The main idea is to use an ancillary particle which con-
trols whether the unitary and swapping operations appearing
in Eq. (2) are applied or not, and then perform a measurement
on that particle. Let us assume that the ancilla is a qubit, ini-
tially prepared in the state (|0〉 + |1〉)/

√
2. Then, the ancilla

interacts successively with particles in region 1 and 2, 1 and
3, and then again 1 and 2, such that if it is in state |1〉, the
unitary operator appearing in Eq. (2) is applied, and otherwise
just the identity operator. At the end of the process, one mea-
sures the Pauli operator σx on the ancilla, whose expectation
value conincides with E(Ψ).

The techniques required to carry out the above procedure
are very sophisticated, and we do not expect that they can
be performed in most of the experimentally relevant situa-
tions (beside atomic physics experiments, where individual
addressing and full control over the atomic interactions may
be gained in the near future [15–17]). In any case, here we
give an alternative method to detect the phase which may be
slightly simpler to implement in the particular setup of atoms
in optical lattices. The main idea is to use two copies of the
spin chain, as it is usual in that setup (for instance, with the
help of superlattices [18]). Then, one would like to determine

E(2)(Ψ) :=〈Ψ|A〈Ψ|B(F1A,1B ⊗ F3A,3B)× (5)

(U1,A
z ⊗ U1,B

z ⊗ U2,A
x ⊗ U2,B

x )|Ψ〉A|Ψ〉B .

Here, A and B refer to the first and second copy of the chain,
and 1, 2, and 3 to three neighboring regions each contain-
ing a sufficiently large number of spins. One can easily con-
vince oneself that E(2) contains the same information as E .
The advantage of this measurement is that the swap only oc-
curs between particles in two chains which are adjacent to
each other. In practice, the ancilla could consist of a differ-
ent atomic species (see [19]), so that it can be transported
independently of the spin chains. As explained in that ref-

erence, one could use this ancilla to apply the conditional uni-
tary operators sequentially to the spin chains. Additionally,
the swapping operator can be generated by letting the ancilla
control the pairwise interaction among the neighboring spins
of the first and second chain in regions 1 and 3, corresponding
to a Hamiltonian H =

∑
(hi + h2i ), where hi = Si,A · Si,B ,

for a time t = π/2. We would like to emphasize that this pro-
cedure may be very difficult in practice, but it still shows that
in principle one can measure the order parameter.

To conclude, in this paper we have introduced an order pa-
rameter for symmetry protected phases in one dimension. We
have illustrated our construction for SO(3) symmetry, where
we have verified our predicitions numerically for the spin-1
bilinear-biquadratic model. We found that the order parame-
ter allows to faithfully determine which gapped phase the sys-
tem is in; moreover, we found that (somewhat surprisingly) it
also returns a distinct signature for the gapless phases of the
model.

Similar order parameters can be constructed for symmetry
protected gapped phases with partial symmetry breaking [3],
by first using conventional local order parameters to detect
which symmetries are broken, and subsequently measuring
order parameters such as the one presented to detect the topo-
logical phase protected by the remaining unbroken symme-
tries. An interesting open question is whether our method
to identify equivalence classes of 2-cocycles, corresponding
to elements in H2(G,U(1)), can be modified to distinguish
symmetry protected phases in two dimensions, which are la-
belled by equivalence classes of 3-cocycles and correspond-
ingly the third cohomology group H3(G,U(1)). Finally, as
the endpoints of string operators can be interpreted as quasi-
particles, it would be interesting to understand whether our
order parameter can be effectively understood as extracting
information about the quasi-particle braiding properties.
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