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One approach to super-resolution fluorescence microscopy, termed stochastic localization mi-
croscopy, relies on the nanometer-scale spatial localization of individual fluorescent emitters that
stochastically label specific features of the specimen. The precision of emitter localization is an
important determinant of the resulting image resolution but is insufficient to specify how well the
derived images capture the structure of the specimen. We address this deficiency by considering
the inference of specimen structure based on the estimated emitter locations. By using estimation
theory, we develop a measure of spatial resolution that jointly depends on the density of the emitter
labels, the precision of emitter localization, and prior information regarding the spatial frequency
content of the labeled object. The Nyquist criterion does not set the scaling of this measure with
emitter number. Given prior information and a fixed emitter labeling density, our resolution mea-
sure asymptotes to a finite value as the precision of emitter localization improves. By considering
the present experimental capabilities, this asymptotic behavior implies that further resolution im-
provements require increases in labeling density above typical current values. Our treatment also
yields algorithms to enhance reliable image features. Overall, our formalism facilitates the rigorous
statistical interpretation of the data produced by stochastic localization imaging techniques.

PACS numbers: 87.57.cf, 87.57.nf, 87.64.M-, 07.05.Pj, 87.80.Nj

Optical diffraction limits the resolution of conventional
fluorescence microscopy, but several super-resolution
techniques that circumvent the diffraction limit have re-
cently emerged [1]. Among these, stochastic localiza-
tion microscopy uses photoswitchable or spontaneous flu-
orophore transitions between fluorescent and dark states
[2–7]. In each imaging cycle, emission from a sparse, ran-
dom subset of fluorophores enables emitter localization
with a precision well beyond the diffraction limit [8, 9].

The quantitative relationship between localization pre-
cision, labeling density, and image resolution remains un-
clear. Some groups suppose that the localization statis-
tics of single emitters [9] or emitter pairs [10] set the
resolution of stochastic localization microscopy. These
are incomplete resolution measures, since they neglect
that fine details of the specimen cannot be determined if
the labeling is too sparse [2]. Other groups heuristically
invoke the Nyquist-Shannon sampling theorem [11] to in-
corporate labeling density [12]. Here we argue that this
heuristic does not properly describe the role of labeling.

Definitions of resolution exist in both wave optics [13]
and estimation theory [10, 14]. Here we consider a fea-
ture of the specimen to be resolvable when a microscopist
can reliably estimate it from the data. Thus, prior infor-
mation regarding statistical properties of the object or of
the imaging system improves resolution. Single molecule
imaging at the nanometer-scale depends critically on the
prior information that photon emitters are point sources
[15]. With extended biological structures, the available
prior information about the sample structure typically

provides weak constraints. It is unclear to what extent
such prior information can suppress spurious labeling de-
tails and enhance true object features.

Here we use estimation theory to find the optimal lin-
ear filter for reconstructing a stochastically labeled object
using emitter localization data. By comparing the perfor-
mance of this estimator to the limit that the Cramer-Rao
lower bound sets for the variance of any biased estima-
tor, we demonstrate optimality across a broader class
of estimators, including those that are nonlinear. Our
estimator yields a resolution measure that incorporates
the precision of emitter localization, labeling density, and
prior information.

We describe the structure of the sample as a spatially
varying probability density of fluorescent labels, s(x).
Fluorophores are located at {xi}Mi=1, where the number
of emitters is modeled as a Poisson random variable with
mean M̄ . For example, if {xi} are locations of stochas-
tically bound fluorescent antibodies then s(x) is the dis-
tribution of antigens, normalized to unity. In stochas-
tic localization microscopy each photon is assigned to a
particular emitter, leading to an estimated emitter den-
sity function, dE(x) =

∑M

i=1 δ(x− x̂i). The estimated
emitter locations, {x̂i}, are distributed about the true
locations in a way that depends on the number of de-
tected photons, the pixel size, the background noise, the
density of active emitters, and the choice of estimator
[4]. In conventional microscopy, the point spread func-
tion (PSF), denoted h, describes the distribution of de-
tected locations of photons emitted by a point source.
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In stochastic localization microscopy, we use an effec-
tive PSF, heff , to describe the distribution of estimated
point source locations for a fixed emitter. Assuming that
emitters are equally bright and do not photobleach, the
number of photons each fluorophore emits is Poisson dis-
tributed with mean Q̄. Photobleaching does not strongly
affect our results (SI Text). When limited by photon
counts, heff ≈ hQ̄. Because of the central limit theorem,
we model heff with a Gaussian. Averaging the estimated
emitter density function over emitter numbers and lo-
cations yields the expected density, d̄E = M̄(heff ∗ s),
where ∗ denotes convolution. In comparison, conven-
tional microscopy does not assign photons to emitters,
so the recorded data is a photon density with mean
d̄C = M̄Q̄(h ∗ s). Here and elsewhere, the superscript
C stands for conventional. Thus, stochastic localization
microscopy provides images that are sharper than con-
ventional images by approximately the square root of the
number of detected photons per emitter.
A frequency-dependent signal-to-noise ratio (SNR),

f(k) ≡ |D̄E(k)|2
Var[DE(k)]

= M̄ |Heff(k)|2|S(k)|2 (1)

aids intuition for stochastic localization microscopy (SI
Text). Capital letters denote Fourier transforms of the
corresponding functions, and |S|2 is the spectral den-
sity of the specimen’s spatial structure. The SNR in-
creases linearly with the number of emitters. With

sufficiently many emitters, M̄ ≫
(

|Heff |2|S|2
)−1

, the
data approaches its average value, and one can esti-
mate the underlying structure through deconvolution,
S ≈ DE/(M̄Heff). Thus, a linear estimator suffices in
the high SNR limit.
Since the effective PSF and the spectral density de-

cline to zero at high spatial frequencies, the SNR also
decreases. To analyze stochastic localization microscopy
data in this regime, we construct the optimal linear esti-
mator, ŝ ≡ ĝ ∗ dE , where ŝ is the estimated intensity and
ĝ is the filter kernel. Minimizing the average squared er-
ror over the ensemble of structures provides the optimal
filter in the Fourier domain,

Ĝ〈|S|2〉(k) =
1

M̄eff(k)Heff(k) (1 + 〈f(k)〉−1)
(2)

(SI Text). Here 〈·〉 denotes the ensemble average,

M̄eff(k) ≡ 〈M̄ |S(k)|2〉
〈|S(k)|2〉 , and the subscript 〈|S|2〉 emphasizes

the dependence on the ensemble-averaged spectral den-
sity. For simplicity, we henceforth assume that the same
average number of emitters label each object in the en-
semble, M̄eff(k) = M̄ . In the limit of sparse labeling, the
kernel approaches 〈|S|2〉H∗

eff , attenuating the data. In
the opposite limit it approaches the deconvolution filter,
1/(M̄Heff). The average SNR mediates the transition
between these limits, thereby identifying and enhancing
reliable image features.
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FIG. 1. The optimal linear estimator outperforms any unbi-
ased estimator. (A)We consider how the error associated with
the optimal linear estimator compares to the theoretically op-
timal unbiased estimator (ǫ2unbiased = 1/(M̄ |Heff(k)|

2)) as a
function of the ratio between the expected and true spec-
tral densities (plotted logarithmically on the x-axis) and the
mean SNR (y-axis). When this ratio is near unity, the op-
timal linear estimator is superior. At high SNR, the role of
the bias decreases, but unbiased estimation is only superior
for spatial frequencies present in the specimen but not in the
expected spectral density. (B) The expected estimation er-
ror as a function of the ratio between the expected and true
spectral densities (x-axis) and the mean SNR (y-axis).

The expected squared error characterizes the per-
formance of this estimator. The bias and variance
of the estimator are b = −S/(1 + 〈f〉) and Var =
(

M̄ |Heff |2
(

1 + 〈f〉−1
)2
)−1

(SI Text). The squared er-

ror, ǫ2 = Var + |b|2, thus satisfies,

ǫ2[S(k)]

|S(k)|2 =
1 + 〈f(k)〉 〈|S(k)|2〉

|S(k)|2

(1 + 〈f(k)〉)2 (3)

(Fig. 1). In the sparse labeling limit, the squared error
is entirely bias; in the dense labeling limit, the squared
error is all variance. The Fisher information for our
model satisfies (J−1)k,k = 1/(M̄ |Heff(k)|2) (SI Text)
[14], so the Cramer-Rao lower bound implies that the
variance of any estimator with our bias function is at

least
(

M̄ |Heff |2
(

1 + 〈f〉−1
)2
)−1

(SI Text). Our estima-

tor achieves this bound.
We use the Cramer-Rao lower bound to compute the

minimal squared error of any linearly biased estimator.
We find that our estimator captures the optimal linear
bias function by minimizing the average squared error
with respect to the bias function (SI Text). In particu-
lar, the optimal linear estimator outperforms all unbiased
estimators (Fig. 1), and any superior estimator must be
nonlinear and have a nonlinear bias function.
This theoretical performance yields a resolution metric

that quantifies the microscopist’s ability to estimate the
specimen. Above the cut-off frequency,

kM ≡ min

{

k|M̄ ≤ β

|Heff(k)|2〈|S(k)|2〉

}

(4)
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FIG. 2. Labeling density more strongly affects the resolution
limit in stochastic localization microscopy than conventional
microscopy. We assume that α2 = σ2/100 to approximate an
object of radius 15 nm and set β = 3. Resolution depends
both on the average number of emitters that label the ob-
ject (x-axis) and on the average number of photons collected
per emitter (y-axis). (A) Over the range of relevant labeling
densities, the effective resolution in conventional imaging only
changes modestly. (B) In stochastic localization microscopy,
the achievable resolution varies substantially over the same
range of labeling densities. Note the different color scales in
(A) and (B).

estimators must suppress signals to avoid noise amplifica-
tion. The resolution, kM , is the lowest frequency having
SNR below a chosen value of β. At this frequency, a frac-
tion 1

β+1 of the deconvolved signal is attenuated. This
measure incorporates labeling and prior information and
cannot exceed frequencies where the effective PSF or en-
semble spectral density vanish.
To illustrate this point, consider a Gaussian effective

PSF, Heff(k) = exp(−σ2k2/(2Q̄)), and a Gaussian en-
semble spectral density, 〈|S(k)|2〉 = exp(−α2k2). This
spectral density approximates an ensemble of uniform
disks (e.g. neurite cross-sections) whose radius is propor-
tional to α. Then,

kM =

√

Q̄

σ2 + α2Q̄
log

M̄

β
(5)

(SI Text). For comparison, the optimal filter kernel for
conventional microscopy is,

ĜC
〈|S|2〉 =

1

Q̄M̄H

(

1 +
1 + Q̄|H |2

Q̄M̄ |H |2〈|S|2〉

) (6)

such that,

M̄ = βeα
2(kC

M
)2
(

1 + eσ
2(kC

M
)2/Q̄

)

(7)

implicitly defines the cut-off frequency, kCM , for the ef-
fective PSF and spectral density given above (SI Text).
Over a broad range of labeling, the cutoff frequency for
conventional microscopy varies only modestly, justifying
the neglect of labeling density in setting the resolution
of conventional microscopy (Fig. 2A). Over the same
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FIG. 3. Optimally filtered data approximate axonal cross
sections more accurately than standard methods. We thresh-
olded and rescaled each image in the data set [16] to have 2
nm × 2 nm pixels and simulated stochastic localization mi-
croscopy with a Gaussian effective PSF whose standard de-
viation is 14 nm. Rows represent peak labeling density: (i)
500 µm−2, (ii) 5× 103 µm−2, (iii) 5× 104 µm−2, (iv) 5× 105

µm−2. Columns represent reconstruction method: (A) true
specimen structure (200 nm scale bar) with estimated emitter
locations shown for (Ai)-(Aiii), (B) estimate from the optimal
linear filter, (C) estimate formed by reducing the number of
pixels, which smooths the image, (D) estimate from Gaussian
smoothing, (E) estimate from Eq. (8), (F) estimate from Eq.
(9). Numbers in the lower left specify the average error over
1000 sessions. We report errors in multiples of the error from
the optimal linear filter at the same labeling density. Num-
bers in the upper left represent method parameters: (A) mean
number of emitters that label the displayed image, (C) num-
ber of pixels per side, (D) standard deviation of the Gaussian
kernel, (E)-(F) number of iterations. All method parame-
ters were optimized for each labeling density to minimize the
method’s error. For each labeling density, we write the small-
est error in red, the second smallest in violet, and the third
smallest in blue. We chose the displayed image randomly.

range, the cutoff frequency for stochastic localization mi-
croscopy varies widely, with noticeable resolution changes
associated with small changes in labeling (Fig. 2B).
We also compare the performance of the optimal lin-

ear estimator to other common methods. With some ex-
ceptions [17], researchers typically present stochastic lo-
calization microscopy data as scattergrams of estimated
fluorophore locations [3] or, to emphasize uncertainty,
Gaussian profiles at these positions [2]. Direct construc-
tion of the optimal filter requires prior knowledge of the
ensemble spectral density. We approximated the situa-
tion in which prior knowledge is not available using two
iterative methods,

S
(0)
d =

1

M
DE , G

(i)
d = Ĝ

|S
(i)
d

|2
, S

(i+1)
d = G

(i)
d DE (8)

S
(0)
H =

1

M
DE , G

(i)
H = Ĝ

|HeffS
(i)
H

|2
, S

(i+1)
H = G

(i)
H DE (9)

(SI Text). In the limit of infinite SNR, and given the
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true spectral density, Eq. (8) yields a stable estimate.
We prefer Eq. (9) in low SNR situations because it sup-
presses high-frequency noise. These algorithms may not
converge, and we compared the estimates obtained at
each of the the first 20 iterations.
As an illustration, we considered the problem of re-

constructing neuronal axons. Using a set of 256 images
of axonal cross-sections obtained by confocal microscopy
[16], which we assumed would provide a reasonably rep-
resentative set of axons shapes, we explored if stochas-
tic localization microscopy would permit reconstruction
of axonal shapes at the nanometer-scale. We randomly
chose 128 images to compute the optimal estimator (Eq.
(2)) and used the rest for testing. Fig. 3 shows the
average performance of several methods over 1000 ses-
sions. The ensemble optimal estimator performed best
at all labeling densities, indicating that a library of high
resolution structures is likely to facilitate reconstruction
via stochastic localization microscopy. Strikingly, with
dense labeling both iterative methods that estimate the
spectral density outperformed methods that ignore the
spectral density, but with sparse labeling these methods
performed poorly. A single iteration of one of these algo-
rithms is usually sufficient to obtain its lowest error.
In summary, we have defined an estimation-theoretic

measure of resolution for stochastic localization mi-
croscopy that incorporates localization precision, label-
ing density, and specimen statistics. One can potentially
use a library of electron microscopy images to obtain the
prior information needed to attain this resolution limit.
This idea is appealing in neuroscience, in which efforts to
reconstruct neural circuitry are striving for immense data
sets [18]. When such data are unavailable, researchers
may use Eqs. (8) or (9) to approximate the filter.
Our estimator is optimal within a broad class, but

strongly biased nonlinear methods may surpass our reso-
lution limit. Our estimator and limit depend only on the
first two moments of the estimated emitter density func-
tion. Since the noise is not Gaussian, higher moments
may contain additional information that researchers can
use to design more sophisticated estimators.
Our resolution measure generally attains a finite value,

even with infinite photon counts (SI Text). A few hun-
dred photons per emitter can be sufficient (Fig. 2B).
This localization precision is experimentally achievable
[19]. Improving the resolution by increasing the label-
ing density of antibody-conjugated fluorophores [3, 5] is
nontrivial because of their substantial size relative to the
features one wants to resolve. Fluorescent proteins and
synthetic dye molecules are generally smaller [20], so their
use as labels may facilitate labeling.
Although denser labeling improves resolution, the

Nyquist criterion suggests an overly optimistic scaling,
kNyq
M ∼

√
M̄ . In our treatment, the resolution generally

scales as
√

log M̄ (SI Text). This dependence reflects a
balance between the linear increase of SNR with label-

ing density and the Gaussian decrease with frequency.
Fundamentally, the Nyquist sampling theorem does not
set the scaling because observing the position of an emit-
ter does not provide the intensity of the sample at that
position.

In comparison to traditional notions of resolution, the
achievable resolution depends on the specimen. An spec-
imen with spectral density concentrated at low frequen-
cies will constrain the resolution limit because it lacks
signal (SNR) at high frequencies. This does not pre-
clude satisfactory image reconstruction because high fre-
quencies are irrelevant in this context. Given a fixed
ensemble of specimens, our theory clarifies the labeling
density and localization precision needed to estimate a
specimen’s spatial frequency components.
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