
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Canted Antiferromagnetic Phase of the ν=0 Quantum Hall
State in Bilayer Graphene

Maxim Kharitonov
Phys. Rev. Lett. 109, 046803 — Published 27 July 2012

DOI: 10.1103/PhysRevLett.109.046803

http://dx.doi.org/10.1103/PhysRevLett.109.046803
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Motivated to understand to nature of the strongly insulating ν = 0 quantum Hall state in bilayer
graphene, we develop the theory of the state in the framework of quantum Hall ferromagnetism.
The generic phase diagram, obtained in the presence of the isospin anisotropy, perpendicular electric
field, and Zeeman effect, consists of the spin-polarized ferromagnetic (F), canted antiferromagnetic
(CAF), and partially (PLP) and fully (FLP) layer-polarized phases. We address the edge transport
properties of the phases. Comparing our findings with the recent data on suspended dual-gated
devices, we conclude that the insulating ν = 0 state realized in bilayer graphene at lower electric
field is the CAF phase. We also predict a gradual crossover and a sharp phase transition upon
tilting the magnetic field from the insulating CAF and FLP phases, respectively, to the F phase
with metallic edge conductance 2e2/h, which could be within the reach of available fields.

PACS numbers: 73.43.-f, 71.10.Pm, 73.43.Lp

Introduction. One of the most intriguing questions
in today’s graphene research concerns the nature of the
strongly insulating ν = 0 quantum Hall (QH) state [with
half-filled zero-energy Landau level (ε = 0 LL)], observed
in both monolayer (MLG) [1] and bilayer (BLG) [2–6]
graphene with two-terminal conductance of the high-
est quality samples G . 10−5e2/h. While the basic
theoretical framework of the correlated ν = 0 state –
the concept of generalized quantum Hall ferromagnetism
(QHFMism) [7] – is well-established [8–15, 17, 18], it
is unambiguously identifying the particular order of the
ν = 0 QHFM (not necessarily the same in MLG and
BLG) that presents a challenge. Given the rich phase
diagram of the ν = 0 QHFM in MLG [10–13] (and, as
we show here, in BLG) and the fact that all phases, but
the spin-polarized one [19, 20], are expected to be fully
insulating [11, 21, 22], achieving this goal requires a more
detailed both theoretical and experimental analysis.

On the experimental side, in BLG, a crucial step
in this direction was recently made in dual-gated sus-
pended devices [4, 6], where application of perpendic-
ular electric field E offers a unique possibility to ma-
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FIG. 1: (left) Lattice structure of BLG. (right) Occupation
of the 01 ⊗ KK′ ⊗ s space of each orbital by four elec-
trons in the ν = 0 QHFM state in BLG. The energy of the
KK′ ⊗ s-symmetric interactions is minimized by forming 01-
pseudospin-singlet pairs [14, 15]. Correspondence between the
ν = 0 QHFM states in BLG and MLG is shown.

nipulate the layer “isospin”. At perpendicular mag-
netic fields B⊥ & 1T, upon applying the electric field,
a phase transition to yet another insulating QH state
with G� e2/h was observed, which can be readily iden-
tified as the valley=layer-polarized phase of the ν = 0
QHFM. This transition was characterized by a spike in
conductance with maximum G ∼ e2/h at the critical field
E∗ ≈ 11B⊥[T]meV/nm.

Motivated by this result, in this Letter, we develop the
theory of the ν = 0 QHFM in BLG. We obtain a generic
phase diagram in the presence of the isospin anisotropy
of electron-electron (e-e) [10, 11, 13] and electron-phonon
(e-ph) [12, 13] interactions, electric field, and Zeeman
effect. We address the edge transport properties of the
phases. Comparing our findings with the data of Refs. 4,
6, we arrive at the conclusion that the insulating ν = 0
QH state realized in BLG at lower electric field [2–6] is
the canted antiferromagnetic phase of the ν = 0 QHFM:
the very existence of the phase transition with applied
electric field provides sufficient information for that. We
also predict that experiments in the tilted magnetic field
could verify this conclusion and allow for observation of
new phase transitions.

ν = 0 QHFM in BLG. Our analysis follows closely
that for MLG [13] and details will be presented else-
where [22]. The ε = 0 LL in BLG, located at the charge
neutrality point, possesses very peculiar properties [23].
First, analogously to MLG, in each valley, K or K ′, its
wave-functions reside on only one sublattice, B̃ or A, of
the low-energy two-band model [23], and hence in either
one of the layers, Fig. 1. This makes not only the AB̃
sublattice and layer, but also the valley degree of free-
dom equivalent, K ↔ B̃, K ′ ↔ A (referred to as KK ′

“isospin” here). Second, both |0〉 and |1〉 magnetic oscil-
lator states belong to the ε = 0 LL, which results in its
unique extra two-fold orbital degeneracy (this subspace is
referred to as 01 “pseudospin” here). Each orbital of the
ε = 0 LL is thus (approximately) eight-fold degenerate
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in the 01⊗KK ′ ⊗ s pseudospin-isospin-spin space.

According to the general theory of QHFMism [7], at
integer filling factors ν, Coulomb interactions result in
spontaneous ordering of discrete degrees of freedom (spin,
valley, etc), favoring the many-body states, in which each
orbital is occupied by electrons in exactly the same way.
At the ε = 0 LL in BLG, due to the difference in wave-
functions of the |0〉 and |1〉 states, interactions possess an
intrinsic anisotropy in the 01-pseudospin space [14, 15].
As demonstrated in Refs. [14, 15], in particular, at ν = 0
the energy minimum of the KK ′ ⊗ s-symmetric interac-
tions is delivered by those QHFM states, in which four
electrons per orbital occupy the states |0〉⊗χa, |1〉⊗χa,
|0〉 ⊗ χb, |1〉 ⊗ χb with arbitrary orthogonal spinors χa,b
in the KK ′ ⊗ s space, i.e., form two pseudospin-singlet
pairs, Fig. 1. Ordering of the remaining isospin-spin de-
grees of freedom is governed by (weaker) mechanisms of
the KK ′⊗s-symmetry breaking. Following Ref. [13], the
energy (per orbital per electron in a pair)

E(P ) = E�(P ) + EV (P ) + EZ(P ), (1)

E�(P ) =
1

2

∑
α
uα{tr2[TαP ]− tr[TαPTαP ]}, (2)

EV (P ) = −εV tr[TzP ], EZ(P ) = −εZ tr[SzP ]. (3)

of these effects as a function of the order parameter ma-
trix P = χaχ

†
a + χbχ

†
b is obtained by calculating the

expectation value of the microscopic Hamiltonian for
BLG with respect to the family of QHFM states. Here,
α = x, y, z, Tα = τKK

′

α ⊗ 1̂s, Sz = 1̂KK
′⊗τsz , τα are the

Pauli matrices, and tr[. . .] is the matrix trace. The single-
particle electric field [EV (P )] and Zeeman [EZ(P )] effects
are characterized by the energies εV ≈ Eaz/2 [24], where
az ≈ 3.5Å is the interlayer distance, and εZ = µBB,

where B =
√
B2
⊥ +B2

‖ is the total magnetic field. The

magnetic field B has arbitrary direction relative to the
sample, Fig. 1, and the z axis in spin space is chosen
along it. The many-body KK ′-symmetry-breaking ef-
fects of e-e and e-ph interactions, crucial in determin-
ing the preferred ground state order, give rise to the
isospin anisotropy E�(P ). Its generic form (2) is fully
characterized by two signed B⊥-dependent energies u⊥ ≡
ux = uy and uz. The bare energies can roughly be esti-

mated [10, 12] as |u(0)⊥,z| ∼ e2a/l2B ∼ 1−10B⊥[T]K, where

a is some lattice spatial scale and lB =
√
~c/(eB⊥), and

can be further renormalized [13].

Phase diagram. The zero-temperature mean-field
phase diagram is obtained by minimizing the energy
E(P ) [16]. Remarkably, the theory of the ν = 0 QHFM
in BLG described by Eqs. (1), (2), and (3) appears to be
formally equivalent to that in MLG [13], upon identifying
the pseudospin-singlet electron pairs in BLG with single
electrons in MLG, Fig. 1: {|0〉, |1〉} ⊗ χa,b ↔ χa,b.

In particular, the phase diagram at zero electric field,
εV = 0, is identical to that in MLG [13]. The anisotropy
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FIG. 2: Phase diagram of the ν = 0 QHFM in BLG in the
space of isospin anisotropy energies (u⊥, uz) at fixed electric
εV and Zeeman εZ energies.

energy E�(P ) alone is minimized by one of the follow-
ing phases (Fig. 16 in Ref. [13]): spin-polarized isospin-
singlet ferromagnetic (F, χa = |K〉⊗ |s〉, χb = |K ′〉⊗ |s〉)
at u⊥ > 0, u⊥ + uz > 0; antiferromagnetic (AF, χa =
|K〉⊗|s〉, χb = |K ′〉⊗|−s〉), with antiparallel spin polariza-
tions ±s of the layers, at uz >−u⊥ > 0; and two isospin-
polarized spin-singlet phases: fully layer-polarized phase
[FLP, χa = |±nz〉⊗| ↑〉, χb = |±nz〉⊗| ↓〉, nz = (0, 0, 1),
analog of the charge-density-wave (CDW) phase in MLG]
at −u⊥ > |uz| and, in the terminology of QH bilay-
ers [7], interlayer-coherent phase [ILC, χa = |n⊥〉 ⊗ | ↑〉,
χb = |n⊥〉 ⊗ | ↓〉, n⊥ = (cosϕn, sinϕn, 0), analog of
the Kekulé distortion (KD) phase in MLG] at −uz >
|u⊥|. Here and below, s/n are the unit vectors defining
the spin/isospin polarizations of the states |s〉 and |n〉;
±nz ↔ K,K ′ and ±sz ↔↑, ↓. The F and AF phases are
SU(2)-spin-degenerate (s) and the ILC and FLP phases
are U(1)- and Z2-isospin-degenerate (ϕn and ±nz), re-
spectively. Including the Zeeman effect [minimization of
E�(P ) + EZ(P ), Fig. 18 in Ref. [13]] does not affect the
spin-singlet ILC and FLP phases, but lifts the spin degen-
eracy of the F phase, s → sz = (0, 0, 1), and transforms
the AF phase to the U(1)-spin-degenerate (ϕs) canted
anti-ferromagnetic phase (CAF, χa = |K〉 ⊗ |s∗a〉, χb =
|K ′〉⊗|s∗b〉), in which the layers have noncollinear spin po-
larizations s∗a,b = (± sin θ∗s cosϕs,± sin θ∗s sinϕs, cos θ∗s)
with the optimal projection s∗z = cos θ∗s = εZ/(2|u⊥|)
on the total magnetic field.

Including the effect of electric field [minimization of
E(P )] does not affect the F and CAF phases, but
lifts the isospin degeneracy of the FLP phase, ±nz →
nz, and transforms the ILC phase to the partially
layer-polarized phase (PLP, χa = |n∗〉 ⊗ | ↑〉, χb =
|n∗〉 ⊗ | ↓〉), in which the valley=layer isospin n∗ =
(sin θ∗n cosϕn, sin θ

∗
n sinϕn, cos θ∗n) has the optimal value

n∗z = cos θ∗n = εV /(uz + |u⊥|) of the projection char-
acterizing the degree of layer charge polarization. As
a result, in the presence of generic isospin anisotropy,
electric field, and the Zeeman effect, the phase diagram
of the ν = 0 QHFM in BLG consists of the F, CAF,
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FIG. 3: (left) Phase diagram in the space (εV , εZ) of electric
and Zeeman energies at fixed anisotropy energies u⊥,z, for
the case (5) of AF phase favored by the isospin anisotropy.
The violet line denotes the evolution of the system with ap-
plied electric field, realized in Ref. [4, 6], with the CAF-PLP
insulator-insulator transition at εV = ε∗V characterized by a
conductance spike. (right) Qualitative behavior of the edge
transport gap ∆ as a function of εV and εZ . In the CAF
phase, ∆ gradually decreases upon tilting the magnetic field
and closes completely once the F phase is reached.

PLP, and FLP phases, Fig. 2. The phase boundaries,
obtained by comparing the energies E(P ) of the phases,
are: PLP-FLP: uz − u⊥ = εV ; CAF-F: u⊥ = −εZ/2;
F-FLP: uz + u⊥ = εV − εZ ; and CAF-PLP:

u⊥ + uz = ε2V /(uz − u⊥) + ε2Z/(2u⊥). (4)

In real BLG, the actual signs and ratio of u⊥,z(B⊥),
which define the ground state order at εV = εZ = 0, are
determined by details of e-e and e-ph interactions at the
lattice scale. Therefore, in practice, transitions between
different phases can potentially be realized by varying the
electric εV or Zeeman εZ = µBB energies relative to the
anisotropy energies u⊥,z(B⊥), Fig. 3, where the latter is
achieved by tilting the magnetic field.

Edge transport. Given the formal equivalence of the
low-energy theories, one can expect the edge charge ex-
citations of the ν = 0 QHFM in BLG and MLG to
have qualitatively the same properties, despite the differ-
ences in microscopic structures [25] of the edges. Below
we combine the earlier predictions for MLG [11, 19–21]
with general physical arguments to arrive at the antici-
pated [22] edge transport phase diagram.

The charge of collective Skyrmion-type excitations of
the ν = 0 QHFM in BLG, associated with inhomo-
geneous isospin-spin textures P (r), is 2e-quantized [15]
due to binding of electrons into pseudospin-singlet pairs.
Since in MLG collective edge excitations of the F phase
are gapless [20], we conclude that the F phase in BLG
supports gapless collective 2e-charge edge excitations and
an ideal sample has a metallic 2e2/h conductance per
edge.

The AF and CDW phases in MLG are predicted to
have gapped edge excitations [11, 21], which can be seen
as special cases of a more general property. Noting that
the isospin-singlet F phase is the only phase that does not
break the valley symmetry, one can argue that, in fact, all

other orders of the ν = 0 QHFM have gapped [26] edge
excitations. In particular, the remaining CAF, PLP, and
FLP phases are expected to be fully insulating (note that
bulk charge excitations are gapped in any phase).

Further distinction between the insulating phases is
made by noticing the following properties. The PLP
(0 < n∗z < 1) and CAF (0 < s∗z < 1) phases continuously
interpolate between their limiting cases, ILC (n∗z = 0),
FLP (n∗z = 1) and AF (s∗z = 0), F (s∗z = 1) phases, which
can be tuned by applying the electric field (εV ) and tilt-
ing the magnetic field (εZ), respectively. Therefore, there
are no phase transitions at the CAF-F and PLP-FLP
boundaries (dashed blue and red lines in Figs. 2 and 3)
and no sudden changes in transport properties, like a con-
ductance spike, should occur there. Consequently, first,
during the crossover of the PLP to FLP phase, the sys-
tem remains insulating, without a marked signature of
the PLP-FLP boundary in transport. Second, since AF
and F phases have gapped and gapless edge charge exci-
tations, respectively, we are forced to conclude, by con-
tinuity argument, that the edge transport gap ∆CAF(s∗z)
of the CAF phase monotonically decreases with s∗z =
εZ/(2|u⊥|) from a finite value ∆CAF(s∗z = 0) = ∆AF at
εZ = 0 to zero ∆CAF(s∗z = 1) = ∆F = 0 at the CAF-F
boundary εZ = 2|u⊥|. I.e., the crossover of the CAF to
F phase upon tilting the field is accompanied by gradual
closing of the edge transport gap. In contrast to the lat-
ter, the edge transport gap of the spin-singlet PLP and
FLP phases is not expected to appreciably depend on εZ .

On the other hand, CAF-PLP and F-FLP are real
phase transitions (black solid lines in Figs. 2 and 3),
which could be signified by conductance spikes due to
increased symmetry at the transition lines. The FLP-F
is an insulator-metal transition, while the CAF-PLP is
an insulator-insulator transition. The resulting qualita-
tive dependence of the edge transport gap ∆ is plotted
in Fig 3.

Canted antiferromagnetic phase. We now identify the
insulating ν = 0 phase observed in Ref. [4, 6] at electric
energy εV < ε∗V below the critical value ε∗V ≈ E∗az/2 ≈
20B⊥[T]K. The F phase at εV < ε∗V is ruled out as
having metallic 2e2/h edge conductance. The phase at
high enough εV & ε∗V is readily identified as the FLP
phase and hence it cannot also occur at lower electric
field. The PLP phase at εV < ε∗V (ILC at εV = 0) is
ruled out, since there is no phase transition between the
PLP and FLP phases: otherwise, the system would be
insulating at all εV . The phase at εV < ε∗V is therefore
the remaining insulating CAF phase of the ν = 0 QHFM.
The evolution of the system with applied electric field is
denoted by a violet line in Fig. 3. The conductance spike
at εV = ε∗V thus corresponds to the CAF-PLP insulator-
insulator transition, which is the only such transition on
the phase diagram, Figs. 2 and 3; upon further increasing
the electric field, the PLP phase continuously crosses over
to the FLP phase, with the system remaining insulating
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at εV > ε∗V .
The conclusion about the CAF phase implies that the

isospin anisotropy (2) favors the AF phase, i.e., that in
real BLG the case

uz > −u⊥ > 0 (5)

is realized. This is consistent with microscopic consider-
ations. In BLG, the leading anisotropy uz > 0 arises
from e-e interactions due to a finite layer separation.
This “capacitance effect” favors equal charge population
of the layers and the anisotropy energy E�(P ) with only
uz > 0 present is minimized by the states χa = |K〉⊗|sa〉,
χb = |K ′〉 ⊗ |sb〉 with arbitrary spin polarizations sa,b
of the layers (it can also be demonstrated [22] that at
this level these are, in fact, exact eigenstates at any layer
separation, which suggests their particular robustness).
This spin degeneracy is then lifted by the competition
between the anisotropy u⊥ and the Zeeman effect. The
negative u⊥ < 0, favoring antiferromagnetic order, can
naturally arise from either e-ph or renormalized e-e in-
teractions [12, 13, 27].

The critical electric energy ε∗V is related to u⊥,z and εZ
according to Eq. (4) for the CAF-PLP transition. Given
the large discrepancy between ε∗V and εZ ≈ 0.7B[T]K at
moderate tilt angles, one may neglect εZ to obtain

ε∗V =
√
u2z − u2⊥. (6)

At smaller |u⊥|, ε∗V is mainly determined by uz: at
|u⊥| . uz/2, one may also neglect |u⊥| with decent ac-
curacy to extract the anisotropy uz ≈ ε∗V ≈ 20B⊥[T]K.
The magnitude and linear B⊥-dependence of ε∗V at higher
B⊥ & 2T in Ref. [4] are fully consistent with the prop-

erties of the bare anisotropies u
(0)
⊥,z(B⊥), while the devi-

ation from linearity at lower B⊥ . 2T can be explained
by enhanced renormalizations of u⊥,z(B⊥) as the tran-
sition to the low-magnetic-field interaction-induced state
of debated nature [28–32] is approached.

Tilted-field experiment. Tilting the magnetic field by
a moderate 45◦ angle (B/B⊥ =

√
2) in Ref. [4] re-

sulted in a small yet systematic increase of the critical
ε∗V , which is also consistent with Fig. 3 and Eq. (4),
but did not induce any new phase transitions. How-
ever, according to the phase diagram in Fig. 3, upon fur-
ther increasing the tilt ratio B/B⊥, the CAF-F crossover
and FLP-F transition will eventually occur. The tilt ra-
tio B/B⊥ = 2|u⊥|/(µBB⊥) required for reaching the F
phase is determined by the values of |u⊥|, which cannot
be obtained from ε∗V [Eq. (6)] independently of uz and for
smaller |u⊥| . uz/2 remains essentially unknown. The
most favorable case would be |u⊥| � uz. For reference,
at “large” |u⊥| = uz/2 ≈ 10B⊥[T]K, the required tilt ra-
tio is B/B⊥ ≈ 30. Since the low-electric-field insulating
ν = 0 state is detectable at as low as B⊥ ≈ 1T [4–
6], the practical tilt ratio as high as B/B⊥ ∼ 50 could

be achieved in BLG for available static magnetic fields
B ≤ 45T.

Outlook. Provided the F phase can be reached by tilt-
ing the magnetic field, it becomes possible to explore the
whole phase diagram (Fig. 3) of the ν = 0 QHFM in dual-
gated BLG devices. The predicted marked distinction be-
tween the edge transport properties of the “spin-active”
CAF and spin-singlet FLP phases – gradual closing of the
edge gap with vs. its insensitivity to tilting the field –
should manifest itself in such an experiment as a gradual
insulator-metal CAF-F crossover vs. a sharp insulator-
metal FLP-F transition. These features can also be used
to test the presented theory.

Author is thankful to P. Coleman for insightful discus-
sions and helpful comments on the manuscript and to E.
Andrei, C. N. Lau, A. Young, and M. Foster for insightful
discussions. The work was supported by the U.S. DOE
grants DE-FG02-99ER45790 and DE-AC02-06CH11357.

[1] J. G. Checkelsky, Lu Li, and N. P. Ong, Phys. Rev.
Lett. 100, 206801 (2008); Xu Du et al., Nature 462,
192 (2009); K. I. Bolotin et al., Nature 462, 196 (2009).

[2] B. E. Feldman, J. Martin, and A. Yacoby, Nature Phys.
5, 889 (2009).

[3] Y. Zhao et al., Phys. Rev. Lett. 104, 066801 (2010).
[4] R. T. Weitz et al., Science 330, 812 (2010).
[5] F. Freitag et al., Phys. Rev. Lett. 108, 076602 (2012).
[6] J. Velasco Jr. et al., arXiv:1108.1609 (2011).
[7] S. M. Girvin and A. H. MacDonald, in Perspectives

in Quantum Hall Effects, ed. by S. Das Sarma and A.
Pinczuk (John Wiley and Sons, New York 1997).

[8] K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96,
256602 (2006).

[9] K. Yang, S. Das Sarma, and A. H. MacDonald, Phys.
Rev. B 74, 075423 (2006).

[10] J. Alicea and M. P. A. Fisher, Phys. Rev. B 74, 075422
(2006); M.O. Goerbig, R. Moessner, and B. Doucot,
Phys. Rev. B 74, 161407 (2006).

[11] J. Jung and A.H. MacDonald, Phys. Rev. B 80, 235417
(2009).

[12] K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett. 103,
216801 (2009); C.-Yu Hou, C. Chamon, and C. Mudry,
Phys. Rev. B 81, 075427 (2010).

[13] M. Kharitonov, arXiv:1103.6285 (2011).
[14] Y. Barlas et al., Phys. Rev. Lett. 101, 097601 (2008).
[15] D. A. Abanin, S. A. Parameswaran, and S. L. Sondhi,

Phys. Rev. Lett. 103, 076802 (2009).
[16] Note that quantum fluctuations do not diverge in the in-

frared in 2 + 1 = 3 space-time dimensions and are there-
fore not essential for QHFM systems.

[17] E. V. Gorbar, V. P. Gusynin, and V. A. Miransky, Phys.
Rev. B 81, 155451 (2010).

[18] R. Nandkishore and L. Levitov, arXiv:1002.1966 (2010).
[19] D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev.

Lett. 96, 176803 (2006).
[20] H.A. Fertig and L. Brey, Phys. Rev. Lett. 97, 116805

(2006).
[21] V. P. Gusynin et al., Phys. Rev. B 77, 205409 (2008).



5

[22] M. Kharitonov, in preparation.
[23] E. McCann and V. Falko, Phys. Rev. Lett. 96, 086805

(2006).
[24] Note that E is indeed the field created by the gates, while

the “self-action” layer charge imbalance effects are sys-
tematically taken into account by the anisotropy (2).

[25] V. Mazo, E. Shimshoni, and H. A. Fertig,
arXiv:1101.0616 (2011).

[26] Due to strong screening [17], bulk and edge transport
gaps in BLG scale as ~2/(ml2B) (m is the effective mass).

[27] The CAF phase due to a different microscopic mechanism

(superexchange) was predicted to exist in semiconductor
QH bilayers at ν = 2 in S. Das Sarma, S. Sachdev, and
L. Zheng, Phys. Rev. Lett. 79, 917 (1998); Phys. Rev. B
58, 4672 (1998).

[28] E. V. Castro et al., Phys. Rev. Lett. 100, 186803 (2008).
[29] R. Nandkishore and L. Levitov, Phys. Rev. Lett. 104,

156803 (2010); Phys. Rev. B 82, 115124 (2010).
[30] F. Zhang et al., Phys. Rev. B 81, 041402 (2010).
[31] O. Vafek and K. Yang, Phys. Rev. B 81, 041401 (2010).
[32] Y. Lemonik et al., Phys. Rev. B 82, 201408 (2010).


