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Phonon self-energy corrections have mostly been studied theoretically and experimentally for
phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering
is used to study phonons of a single layer of graphene (1LG) originating from a double-resonant
Raman process with q 6= 0. The observed phonon renormalization effects are different from what
is observed for the zone-center q = 0 case. To explain our experimental findings, we explored
the phonon self-energy for the phonons with non-zero wave-vectors (q 6= 0) in 1LG in which the
frequencies and decay widths are expected to behave oppositely to the behavior observed in the
corresponding zone-center q = 0 processes. Within this framework, we resolve the identification
of the phonon modes contributing to the G⋆ Raman feature at 2450 cm−1 to include the iTO+LA
combination modes with q 6= 0 and also the 2iTO overtone modes with q = 0, showing both to be
associated with wave-vectors near the high symmetry point K in the Brillouin zone.

PACS numbers: 73.20.Hb, 73.22.-f, 78.30.Na, 78.67.Ch

Electron-phonon (el-ph) interactions are responsible
for many important effects in condensed matter physics
[1]. In particular, the phonon self-energy, which is mainly
due to the el-ph coupling, is a remarkable effect which
contributes to both the phonon frequency and decay
width renormalizations due to the creation (annihila-
tion) of electron-hole (e-h) pairs through phonon absorp-
tion (emission). These phonon self-energy corrections are
needed to explain a set of well-known effects, such as
the Kohn anomaly [1, 2], the Peierls transition [1, 3, 4],
polaron formation [1, 5, 6], and other types of phonon
renormalizations and perturbations [7–10].
Particularly special, single-layer graphene (1LG) has

linear electronic energy dispersions E(k) around the non-
equivalent high symmetry points K and K′ in the Bril-
louin zone as a solution of the Dirac equation which gives
massless particle behavior around K (K′) [11]. How-
ever, one cannot properly solve the electronic and vi-
brational structure for most nanocarbon materials near
the Dirac points when considering the adiabatic approx-
imation, which disregards the ionic motion of the car-
bon ions [12–14]. When the adiabatic approximation
cannot be applied [1, 2], el-ph interactions are needed
to take into account non-adiabatic processes, which give
rise to important and strong phonon self-energy correc-
tions [1]. Within second-order perturbation theory, the
phonon self-energy can be approximately described as
[1, 2, 9, 10]:

Π(ωq, EF ) = 2
∑

kk′

|Vkk′ |2

~ωq − Eeh + iγq/2
× (fh − fe) (1)

where k and k′ are, respectively, wave-vectors for the ini-

tial and final electronic states; q ≡ k− k′ is the phonon
wave-vector; Eeh ≡ (Ee

k′ −Eh
k) is the e-h pair energy; ωq

is the phonon frequency; γq is the phonon decay width;
fh(fe) is the Fermi distribution function for holes (elec-
trons) and Vkk′ gives the el-ph coupling matrix element.
For a specific ωq, the phonon energy correction due to its
self-energy is given by ~ωq−~ω0

q = Re[Π(ωq, EF )], which
is the real part of Eq.1, where ~ω0

q is the phonon energy in
the adiabatic approximation. Likewise, the decay width
γq is given by the imaginary part of Im[Π(ωq, EF )] of
Eq. 1 [1, 2, 9].

These phonon renormalizations occur any time we have
non-zero matrix elements Vkk′ and occupied (unoccu-
pied) initial (final) states, in the sense that an electron-
hole pair can be created (annihilated) by a phonon ab-
sorption (emission) process as a perturbation. In Eq. 1,
although the summation is performed over all the elec-
tronic states, the combination of electronic states that
fulfills the momentum and energy requirements for a
given phonon will be the ones to significantly contribute
to the phonon self-energy. In other words, this combina-
tion of states will present a non-null Vkk′ and a resonant
behavior given by the denominator of Eq. 1. There are
two types of electron-phonon interactions, namely intra-
valley (AV) (Figs. 1(a) and 2(b)) and inter-valley (EV)
(Figs. 2(a) and (c)) processes [15]. For an AV process,
the initial and final states both occur within the region
close to a K [K′] point, while for inter-valley processes,
K is connected to K′ (or K′ to K), respectively, in a dif-
ferent valley by a q 6= 0 phonon. Thus the AV (EV) pro-
cess corresponds to Γ (K) point phonons. The phonon
wavevector q for AV (EV) processes are measured from
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FIG. 1: (Color online)(a) possible (EF = 0) and not possible
(EF 6= 0) AV q = 0 processes for e-h pair creation (annihi-
lation) due to phonon (with energy ~ωq) absorption (emis-
sion). Eeh stands for the e-h pair energy. (b) and (c) show,
respectively, the frequency ωG hardening and decay width γG
narrowing for the G-band Raman feature as a function of gate
voltage VG. The insets in (b) and (c) are theoretical predic-
tions based on Ref. [2] of the EF dependence of ~ωq − ~ω0

q

and γq for an AV q = 0 process. The EF values on the

upper scales are obtained with EF=~|vF |
√

πCgVG/e, where
Cg=115aF/µm2 is the gate capacitance per unit of area, e is
the electron charge and |vF |=1.1×106 m/s is the carrier Fermi
velocity.

the Γ (K) points with both q = 0 and q 6= 0 possible.
Previously, most discussions of phonon self-energy

renormalizations have been for zone-center phonons (Γ-
point) with q = 0, which can be appreciated by observing
the G-band Raman feature evolution in 1LG as the Fermi
energy (EF) is varied (see Figs. 1(b) and (c))[7, 10, 16–
18]. In the present work, we use gate-modulated reso-
nant Raman spectroscopy (RRS) to address the effect of
a EF variation due to applying a gate voltage (VG) to
the phonon self-energy (Eq.1), for 1LG systems, in cases
where q 6= 0 (AV and EV processes). These cases have
not been sufficiently studied previously. Here, we study
the double resonance Raman frequency ranges between
2350 and 2850 cm−1, which contain the G⋆ and the G′-
band spectral features as shown in Fig. 3(a) [11, 19, 20].
We show below that the phonon renormalization for
q 6= 0 phonons (K-point phonons) gives an EF depen-
dence different from that for q = 0 Γ-point phonons. We
show that these differences in behavior can be used to
observe that the G⋆ feature is composed of two Raman
peaks which behave differently from one another as |VG|
is varied.
The graphene flakes used in our experiments were ob-

tained by micro-mechanical exfoliation of graphite over
Si substrates with a 300 nm thick layer of SiO2. Next, e-
beam lithography was performed to pattern our devices.
Then, thermal evaporation of Cr/Au (5 and 80 nm, re-
spectively) was done. For each VG value, RRS spectra

were taken with a 532nm wavelength laser source in the
backscattering geometry using a 100X objective. The
laser power measured from the objective was 1.5mW.
The spectra were analyzed using Lorentzian line-shapes
from which frequencies and decay widths were extracted
[21]. Figures 1(b) and (c) and Figs. 3(a)-(e) show the ex-
perimental results [22]. Note that RRS provides informa-
tion about both the electronic and vibrational structures,
while the VG variation allows for control of EF . We show
that, due to the difference in behavior between the q = 0
and q 6= 0 processes, this combination of techniques pro-
vides a precise way to verify the assignments of either
overtones and/or a combination of phonon modes.
The G⋆ and G′ features were intentionally chosen for

this discussion because: (1) they are the most prominent
double-resonance Raman features in the graphene spec-
trum, offering a convenient platform, together with the
G-band feature, to observe experimentally the two dif-
ferent types of phonon renormalizations, one found for
the q = 0 phonons and the other for q 6= 0 phonons,
and (2) as a consequence of these different phonon renor-
malization effects, we have solved a long-time discussion
in the literature, showing that the G⋆ feature is com-
posed of both the iTO+LA (q = 2k) and 2iTO (q = 0)
Raman active modes, both measured from the K-point.
In the literature, the G⋆ feature around 2450 cm−1 has
been assigned to either the iTO+LA phonon combina-
tion mode (q = 2k EV process) [20], or to the 2iTO
phonon overtone mode (q = 0 EV process) [19], await-
ing a more definitive assignment. Note the possibility
of two types of double resonance conditions, q = 0 and
q = 2k, for a phonon with momentum q and an elec-
tron with momentum k [23, 24]. The G′ (or 2D) feature
at 2670 cm−1 is widely known to be an overtone of the
iTO phonon mode (q = 2k) [11, 19, 20]. It gives a dis-
persive phonon frequency as a function of laser energy
ELaser which exhibits the value of 103 cm−1/eV [25]. The
iTO+LA (q = 2k) combination mode presents a disper-
sion of -(16±1) cm−1/eV (measured in this work), while
the 2iTO (q = 0) overtone mode (also measured in this
work) is not dispersive (see Fig. 3(b)). Figure 3(a) shows
that indeed the G⋆ feature is asymmetric, suggesting that
it consists of two Lorentzians peaks rather than just one.
Equation 1 has previously been explored for the cases

where the phonon momentum q vanishes (q = 0) for the
AV intra-valley process. In these cases, at zero temper-
atures (T=0), the phonon energy correction ~ωq − ~ω0

q

is:

~ωq − ~ω0
q = α|EF|+

α~ω0
q

4
ln

(∣

∣

∣

∣

∣

2|EF| − ~ω0
q

2|EF|+ ~ω0
q

∣

∣

∣

∣

∣

)

(2)

where α/(2cπ~) = 35.8 cm−1 [2], while γq, which will
be proportional to the el-ph coupling strength, gives the
damping of the phonon mode due to real e-h pair cre-
ation (annihilation) [2, 9, 17, 18]. The insets of Figs. 1(b)
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FIG. 2: (Color online) (a) possible (EF = 0 and EF 6= 0) q = 0 (measured from the K point) EV processes, (b) not possible
(EF = 0) and possible (EF 6= 0) AV processes and (c) possible EV processes for electron-hole pair creation (annihilation) due
to phonon (with energy ~ωq) absorption (emission) when the phonon wave-vector is not zero (q 6= 0). (d) shows illustrative
predictions for the VG-dependence of the phonon frequency correction ωq − ω0

q (black solid line) and the corresponding decay
width γq (grey dashed line) when q 6= 0, both as a function of EF. The ωq − ω0

q and γq values in (d) were normalized to

illustrate the concept of ωq softening and γq broadening. Eeh is the e-h pair energy and EK→K′ is the energy required to
translate an electron from K to K′ [26].

and (c), which were based on Ref. [2], give the results il-
lustrated for the renormalization of ωq and γq, respec-
tively. From these insets and Eq.2, we observe that
when 2|EF| < ~ωq, real e-h pairs can be created (an-
nihilated), which leads to a stronger electron-ion inter-
action screening. As a consequence, the phonon mode
softens [2, 9, 17, 18]. However, when 2|EF| > ~ωq the
production of real e-h pairs becomes forbidden due to
the Pauli principle. This leads to a phonon mode hard-
ening where the phonons are not damped any more (they
are now long lived) [2, 9, 17, 18]. But what happens if
2|EF| = ~ωq? In this situation, the phonon mode soft-
ening shows its highest values, which represent two sin-
gularities in Eqs. 1 and 2, as shown by the black solid
curve in the inset of Fig. 1(b). These singularities give
rise to what is commonly known as Kohn-anomalies. As
an example of phonon renormalization when q = 0 for
the AV process (see Fig. 1(a)), the ωG and γG variations
of the G-band Raman feature are shown in Figs. 1(b) and
(c), respectively, as |EF| is varied due to different VG val-
ues. The experimental results (Figs. 1(b) and (c)) are
in good agreement with theory [2, 16–18], which shows
a ωG hardening and γG narrowing when VG increases.
Note that the absence of Kohn-anomalies is expected be-
cause of a broadening (comparable to the phonon energy)
in |EF| due to thermal excitations (relaxations) and non-
uniformity in the density of carriers (due to foreign chem-
ical species and charge traps in the substrate)[17, 18].
Next, we report the new experimental results for phonons
corresponding to the cases q = 0 EV (inter-valley) and
q 6= 0 AV/EV processes.

Both the G⋆ iTO+LA mode at 2450-53cm−1 and the
G′ mode at 2670-73cm−1 are EV double-resonance Ra-
man processes with q 6= 0 (see Fig. 3(a)) and, as shown in
Figs. 3(c)-(e), they both show a different behavior when

VG increases compared to the behavior observed for the
AV q = 0 process. Starting with the G′-band feature
(the 2iTO q = 2k EV process around the K-point), it
is seen that its frequency ωG′ decreases with increasing
|VG| (Fig. 3(c)), while its decay width γG′ increases with
increasing |VG| (see the inset in Fig. 3(c)). Here, we see
that the same behavior is observed for the iTO+LAmode
frequency ωiTO+LA (q = 2k EV process around the K-
point), as shown in Fig. 3(d), and for its decay width
γiTO+LA, as shown in Fig. 3(e). The 2iTO G⋆ feature
at 2470-73cm−1, which is a q = 0 EV process around
the K point (see Fig. 2(a)), is observed in Figs. 3(d) and
(e) to show a frequency ω2iTO and a decay width γ2iTO

that almost do not change with increasing |VG|. This be-
havior shows that the 2iTO (q = 0) mode couples only
weakly to the electronic states in graphene and therefore
its phonon self-energy corrections are small.

To explain our experimental findings, a phenomeno-
logical formulation for the phonon self-energy for the
EV q = 0 and AV/EV q 6= 0 processes in single-layer
graphene are presented. But first, the reader should re-
view what happens for phonons with q = 0: in the case
of AV processes for the q = 0 phonons, which applies to
the G-band feature (see Fig. 1), the creation (annihila-
tion) of a real e-h pair is very high when EF = 0, which
implies a phonon frequency (ωq) softening and phonon
decay width (γ) broadening. With increasing |EF|, ωq

hardens and γq narrows, which means that the real e-h
pair creation (annihilation) is being halted by the Pauli
principle because the phonon energy is becoming smaller
than 2|EF|. Next, we see that this approach can now
be used to understand the EV q = 0 and AV/EV q 6= 0
processes considering a small difference: now, instead of
the Pauli principle, the density of phonon and electronic
states, as well as the energy and momentum conservation
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FIG. 3: (Color online)(a) The experimental G⋆ and the G′ bands as they appear in the resonant Raman spectrum. The
asymmetric G⋆ feature is a combination of the iTO+LA (q = 2k read from the K point) mode and the 2iTO (q = 0 read from
the K point) mode. The G′ mode is an overtone of the iTO mode (q = 2k). For illustrative purposes, the signal of the G⋆

feature was multiplied by a factor of 10 and the Lorentzian profiles used to fit the spectrum are shown in constructing (a).
(b) The frequency dispersion of the G⋆ peaks as a function of laser energy (ELaser) and shows that the iTO+LA (q = 2k) is a
dispersive mode, while the 2iTO (q = 0) is non-dispersive [19, 20]. (c) The gate voltage VG dependence of the 2iTO (q = 2k)
ωG′ and γG′ (inset in (c)). (d) and (e) show, respectively, the ωq and γq dependencies on |EF| seen for the iTO+LA and 2iTO
modes. In (c), (d) and (e), the EF values were calculated as explained in the caption of Fig. 1.

requirements, will be responsible for halting the real e-h
pair creation (annihilation).

As shown above, a different behavior is expected for
the q = 0 phonon (measured from K-point) in the EV
process shown in Fig. 2(a), which explains the G⋆ 2iTO
mode behavior as |EF| is varied with varying VG. Ac-
cording to the Fermi golden-rule, the probability that a
real electron-hole pair exists at EF = 0 (upper line of
Fig. 2) is quite small since the density of states of both,
electrons and phonons, at EF almost vanishes [10, 11].
Therefore, no softening of ωq and no broadening of γq is
expected, since almost no real electron-hole pair is being
created (annihilated). When |EF| increases (lower line
in Fig. 2), the probability for a K-point q = 0 phonon
to connect inequivalent energy k and k′ states (k = k′)
increases, because the density of phonon and electron
states also increases as we move away from the K-point
[10, 11]. This means that the number of real e-h pair
creations (annihilations) increases and thus the phonon
mode softening and damping effects could be observed
with increasing |EF|. However, for EV processes, part of
the phonon energy is used to translate the electron from
K to K′ (which requires an energy EK→K′ charged to
the system) and, therefore, the remaining phonon energy
to create an e-h pair is small so that Eeh ∼ 0, where Eeh

is the e-h pair energy. This means that ωq−ω0
q will be a

small correction and, therefore, small ωq softenings and
small γq dampings are expected for any |EF| value (weak

EF-dependence).

By considering phonon modes with q 6= 0 (AV and
EV processes) as shown in Figs. 2(b) and (c), the phonon
wave-vectors are either around the Γ point or around
the K point. These cases explain the G′ and the G⋆

iTO+LA mode behaviors as |VG| is varied. Since the
phonon and electron density of states are small close to
the K(K′) points and since the phonon energy dispersion
for graphene has a much smaller slope than that for the
electronic energy dispersions [11], there is essentially no
coupling between q 6= 0 phonons and e-h pairs (there is no
q such that q = k− k′) if EF = 0 and therefore the soft-
ening and damping of the phonon mode in this case does
not take place in a resonant way, i.e. where Eeh = ~ωq

for the AV process and EK→K′+Eeh = ~ωq for the EV
process. If no phonons with q 6= 0 can connect electronic
states with different k and k′ at EF = 0, the matrix
elements Vkk′ in Eq. 1 are close to zero and essentially
no self-energy corrections occur. Precisely speaking, in
the case of the EV process (Fig. 2(c)), the e-h pair cre-
ation (annihilation) is possible for EF = 0 but, as stated
above, the density of phonon and electron states is very
small at EF ∼ 0 which makes the probability for the e-h
pair creation (annihilation) also small. However, when
EF 6= 0, the density of phonon and electron states in-
creases and phonon modes with q 6= 0 can now connect
electronic states with different k and k′, in the sense
that there is a q such that q = k− k′ (the differences
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between slopes in the electron and phonon dispersion de-
crease when we move away from the K-point [11]). This
gives rise to a strong electron-phonon coupling which en-
hances the creation(annihilation) of real e-h pairs. As
a consequence, the phonon mode softens (ωq decreases)
and gets damped (γq broadens) as shown in Figs. 2(b)
and (c). This q 6= 0 (AV and EV processes) behavior is
illustrated in Fig. 2(d), where it is seen that the frequency
softening (black solid line) must increase with increasing
|EF| while the decay width (grey solid line) must broaden
with increasing |EF|.
In summary, the widely studied intra-valley AV q = 0

case [2, 16–18] shows that when EF = 0 the phonon soft-
ening and damping is maximum due to real e-h pair cre-
ation (annihilation) and decrease with increasing |EF|.
Here, we have shown that in the q 6= 0 cases (oppo-
sitely to what is observed for the q = 0 AV process),
the phonon softening and damping is a minimum when
EF = 0 and increases with increasing |EF|. For the EV
q = 0 case, Eeh ∼ 0 and a weak and small ωq and γq
dependence with EF is expected. Due to these differ-
ent phonon self-energy behaviors, gate-modulated reso-
nant Raman spectroscopy provides a powerful technique
to assign the phonons participating in the formation of
overtones or combination modes, to identify whether a
Raman feature is associated with the q = 0 or the q 6= 0
processes and to determine how a given phonon mode is
coupled to the electronic states of single-layer graphene.
As shown in Figs. 3(a)-(e), we applied these combined
techniques to study the G⋆ and G′ modes, which are
the most prominent double resonance q 6= 0 Raman fea-
tures in the SLG graphene spectrum. Within this frame-
work, we also showed that the G⋆ mode is an asymmet-
ric peak composed by both, the iTO+LA combination
mode, which is an EV q = 2k process with a strong
phonon renormalization, and the 2iTO overtone mode,
which is an EV q = 0 process with a weak phonon renor-
malization, thereby resolving a long-time discussion in
the literature. Finally, the principles applied to this fre-
quency range can be applied to any other features in the
RRS.
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