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Abstract

Limit-cycle oscillations induced by time delay are widely observed in various systems, but a

systematic phase reduction theory for them has still to be developed. Here we present a practical

theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the

theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can

be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear

form for the delay differential equations. We confirm the validity of the proposed framework

for two biological oscillators and demonstrate that the derived phase equation predicts intriguing

multimodal locking behavior.
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Delay differential equations (DDEs) are an increasingly important tool in various ar-

eas of science and engineering including nonlinear optics, traffic flow, climate systems, and

biological regulations [1–6]. For example, cortical neurons have delays in transmission of

electrical spikes [7, 8] and gene-protein interactions have several sources of delays such as

the transcription of proteins from mRNA [9–15], both of which lead to rhythmic activities.

Often single biological oscillators are coupled together through mutual interaction to gener-

ate synchronous rhythms, which plays important functional roles, e.g., neural information

processing and somite segmentation [12, 16]. Various DDEs [5, 7–15] have been proposed as

models of such biological rhythms, which typically exhibit limit-cycle oscillations.

For limit-cycle oscillators described by ordinary differential equations, a standard math-

ematical method to address the issue of synchrony is to reduce the oscillators perturbed by

mutual interaction to simple phase models. Each oscillator is described by a scalar equation

d

dt
θ(t) = ω + Z(θ)p(t), (1)

where θ is the phase of the oscillator, ω is the natural frequency, and p(t) represents pertur-

bations. The function Z(θ), which is the focus of this study, quantifies linear response of the

oscillator’s phase to the applied perturbations, which we call the phase response function

(also called the phase sensitivity function [17] or the infinitesimal phase resetting curve [18]).

It quantitatively captures essential dynamics of the oscillator and is a fundamental quantity

for the phase reduction theory. Based on the fact that Z(θ) is actually an eigenfunction

of an adjoint linear operator derived from the full system of equations, a convenient semi-

analytical method, called the adjoint method, that provides numerically accurate Z(θ) has

been widely used [18, 19].

The reduction to the phase model is valid as long as the mutual interaction between

the oscillators is sufficiently weak. By plugging the mutual interaction term into p(t) and

averaging Eq. (1), we can obtain a simple phase model in the general form [18, 20, 21],

d

dt
θj = ωj +

∑

k

Γjk(θk − θj), (j = 1, 2, ...), (2)

where θj is the phase of the jth oscillator, ωj denotes its natural frequency, and Γjk is the

phase coupling function representing effective interaction between oscillators j and k. Γjk is

a periodic function calculated by convolving the mutual interaction term p(t) with Z(t).

The above phase-reduction theory has been widely used to study synchronization proper-

ties of various types of coupled oscillators [18, 20, 21]. However, somewhat surprisingly, the
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phase reduction theory for delay-induced oscillations has not been formally developed. In

particular, a practical theoretical framework to calculate Z(θ) has been missing for delay-

induced limit cycles. Thus, direct numerical simulations have been mainly used to investi-

gate synchronization of DDEs [12–14]. One possible reason for this would be the infinite-

dimensional nature of DDEs. Limit cycles of DDEs reside in infinite-dimensional phase

space and the standard adjoint method for ordinary low-dimensional limit cycles [18] cannot

be applied directly. Note that delays in the oscillator’s intrinsic dynamics are essentially

different from delays in the coupling between oscillators; the latter can be investigated by a

simple extension of the conventional phase reduction theory [1, 22, 23].

In this study, we develop an adjoint method to compute Z(θ) for limit cycles exhibited

by DDEs. A key factor is the introduction of a mathematically appropriate dual product

(bilinear form) for DDEs [24–26], which enables us to properly define the phase θ and

calculate Z(θ) for limit cycles in infinite-dimensional phase space. As examples, we consider

biological oscillations in cortico-thalamic and gene-regulatory models, and demonstrate that

the method nicely works through comparisons to direct perturbation methods, analytical

computations near the bifurcation point, and numerical computations of weakly coupled

systems. Moreover, based on the obtained Z(θ), we reveal that the coupled system can

exhibit intriguing multimodal phase-locking behavior, in which the number of stable phase

differences increases with the time delay.

Our aim is to derive a phase equation (1) from a DDE of the form

d

dt
X(t) = F (X(t), X(t− τ)) (3)

by properly calculating Z(θ), where X(t) ∈ RN is a column vector of N real components

and τ is a nonnegative constant delay. We assume that this DDE has a linearly stable

limit cycle whose period is T . As formulated by Hale [25] and Campbell [27], a DDE is

considered a functional differential equation by introducing a function-space representation

of X(t), X(t)(σ) ≡ X(t + σ) (−τ ≤ σ ≤ 0), where X(t) ∈ C0 and C0 = C([−τ, 0] → RN)

is a space of continuous functions that map the interval [−τ, 0] into RN . Namely, the DDE

is considered an infinite-dimensional dynamical system whose phase space is the function
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space C0. From Eq. (3), the dynamics of X(t)(σ) can be described as






















d

dt
X(t)(σ) =

d

dσ
X(t)(σ) (−τ ≤ σ < 0),

d

dt
X(t)(σ) = F (X(t)(0), X(t)(−τ)) (σ = 0).

(4)

We denote the limit-cycle orbit as X0(t) and a small deviation from it as Y (t), i.e., X(t) =

X0(t) + Y (t). The linearized equation for Y (t) can then be written as

−
d

dt
Y (t) + F1(t)Y (t) + F2(t)Y (t− τ) = 0, (5)

where Fj(t) = ∂xj
F (x1, x2) (j = 1, 2) is evaluated at (x1, x2) = (X0(t), X0(t− τ)). Although

the coefficients F1(t) and F2(t) of Y (t) are time-dependent periodic functions, this linearized

equation is still a DDE. We denote a linear operator L̂ as






















(L̂Y (t))(σ) = −
d

dt
Y (t)(σ) +

d

dσ
Y (t)(σ) (−τ ≤ σ < 0),

(L̂Y (t))(σ) = −
d

dt
Y (t)(σ) + F1(t)Y

(t)(0) + F2(t)Y
(t)(−τ) (σ = 0),

(6)

by introducing a function Y (t) ∈ C0 as Y (t)(σ) = Y (t + σ) (−τ ≤ σ ≤ 0).

Following Halanay [24], Hale [25], and Simmendinger [26], an adjoint equation to Eq. (5)

can be introduced as

d

dt
Y ∗(t) + Y ∗(t)F1(t) + Y ∗(t+ τ)F2(t + τ) = 0, (7)

where Y ∗(t) ∈ RN∗ is a row vector of N real components. Introducing again a functional

representation Y (t)∗(s) ≡ Y ∗(t + s) (0 ≤ s ≤ τ), where Y (t)∗ ∈ C∗

0 and C∗

0 = C([0, τ ] →

RN∗) is now a space dual to C0 consisting of functions that map the interval [0, τ ] into RN∗.

Then, an adjoint operator L̂∗ of L̂ is derived as






















(L̂∗Y (t)∗)(s) =
d

dt
Y (t)∗(s)−

d

ds
Y (t)∗(s) (0 < s ≤ τ),

(L̂∗Y (t)∗)(s) =
d

dt
Y (t)∗(s) + Y (t)∗(0)F1(t) + Y (t)∗(τ)F2(t+ τ) (s = 0).

(8)

The above adjoint equation and the adjoint linear operator are associated with a bilinear

form that is appropriately defined for DDEs [26],

〈ψ, φ; t〉 ≡ ψ(0)φ(0) +

∫ 0

−τ

ψ(ξ + τ)F2(t+ ξ + τ)φ(ξ)dξ, (9)
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where φ ∈ C0 and ψ ∈ C∗

0 . It is easy to show that dX
(t)
0 /dt is a zero eigenfunction of

the linear operator L̂ by differentiating Eq. (6) with respect to t. Now, let y
(t)∗
0 denote the

zero eigenfunction of the adjoint operator L̂∗ and p(t)(σ) = pU(σ)δ(t − ta) an infinitesimal

perturbation applied to the oscillator at time t = ta, where p is a tiny constant, U is a unit

step (Heaviside) function, and δ is a Dirac delta function. The function U indicates that only

the X
(ta)
0 (0) component of the whole oscillator state X

(ta)
0 ∈ C0 is perturbed. Namely, only

the present component of the oscillator state can be modified and its past components cannot

be changed. Then, similarly to the case of ordinary differential equations [18, 20], projection

of the perturbation onto the phase component can be represented using the bilinear product

as 〈y
(t)∗
0 , p(t); t〉. This quantity is equal to y

(ta)∗
0 (0)p(ta)(0), because p(t)(σ) = 0 when −τ ≤

σ < 0. Therefore, y
(ta)∗
0 (0) = y∗0(ta) should be identical to Z(θ = ωta) after appropriate

normalization.

In actual calculations, the limit-cycle solution X0(t) is obtained numerically. Using the

numerical solution X0(t), we can integrate Eq. (7) backwards in time from arbitrary initial

conditions to obtain y∗0(t), because functional components other than y∗0(t) have positive

eigenvalues and therefore eventually vanish (in reverse time) due to linear stability of X0(t)

(by virtue of the Floquet theorem [26]). We further normalize the amplitude of y∗0(t) =

y
(t)∗
0 (0) as

〈

y
(t)∗
0 ,

d

dt
X

(t)
0 ; t

〉

= ω =
2π

T
. (10)

The phase response function is then given by Z(θ) = y∗0(t = θ/ω) = y
(t=θ/ω)∗
0 (0) . This

procedure gives an adjoint method for delay-induced limit cycles described by DDEs and

is the main result of this study. If we take the limit of F2 → 0 or τ → 0, the proposed

adjoint method for DDEs becomes identical to the conventional adjoint method for ordinary

differential equations. Therefore, the above method is actually a natural extension of the

adjoint method to delay-induced oscillations.

We now evaluate Z of several types of DDEs by the adjoint method proposed above and

demonstrate that the results agree well with those obtained by a direct perturbation method

or by analytical calculations near the bifurcation point. To check the validity of the adjoint

method, we calculate Z(θ) by directly applying weak impulsive perturbations to the DDE

exhibiting limit-cycle oscillations. Namely, we kick the orbit X(t) out of the limit cycle, wait

for the orbit to come back to the limit cycle, and measure the asymptotic phase difference
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caused by the kick. It is notable that the actual time course of the orbit X(t) typically

exhibits several ‘kickbacks’ of period τ before finally coming back to the limit cycle due to

the delay. We thus need to run the numerical simulation long enough, so that the whole time

course of X from X(t− τ) to X(t) returns sufficiently close to the limit cycle in calculating

the asymptotic phase difference.

A crucial difference between the adjoint method and the direct perturbation method

should be emphasized here. The adjoint method is semi-analytic in the sense that it di-

rectly solves a linear equation for Z itself, whereas the direct perturbation method is semi-

experimental that relies on direct simulations of the perturbed system. The latter method

is vulnerable to incorrect estimations of the phase response, because strong perturbations

induce nonlinearity in the phase response and weak perturbations result in tiny phase re-

sponses that are difficult to measure accurately. Therefore, the adjoint method has a great

advantage in computing Z for given mathematical models.

As the first example, we consider a second order differential equation with a linear delay

term and a cubic nonlinearity,

d2x(t)

dt2
= γ

dx(t)

dt
+ αx(t) + βx(t− τ) + ǫx(t)3. (11)

This is a simplified cortico-thalamic model for electroencephalogram rhythms [7, 8]. We

take the parameters as β = −0.4, γ = −2.0, ǫ = −10.0, τ = 8.0, and vary α as a control

parameter. At α = −0.051, this model undergoes a Hopf bifurcation and yields a small

amplitude limit cycle in the vicinity of this bifurcation point. We here take α = −0.039,

which gives small amplitude oscillation. Then, the center-manifold reduction is applicable to

Eq. (11) and the phase response function can be analytically obtained as Z(φ) ≃
√

−3ǫ/4µ ·

2 cosφ/{−γ · [1 − Ωτ cot(Ωτ)]}, where Ω = 0.20 is the Hopf frequency and µ = 0.012 is a

scaled bifurcation parameter (see Ref. [8] for details).

Since Eq. (11) is a second order differential equation, we denote the dynamical variables

as X(t) = (x(t), dx(t)/dt)T and the limit cycle solution as X0(t) = (x0(t), dx0(t)/dt)
T . Then,

the functions F1(t) and F2(t), which are required for the adjoint equation (7) as well as for

the bilinear form Eq. (9), are given as

F1(t) =





0 1

α + 3ǫx0(t)
2 γ



 , F2(t) =





0 0

β 0



 , (12)
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respectively. Because F2(t) is constant, the bilinear form does not depend on time in this

case. We compare the phase response functions obtained by the adjoint method and by the

direct perturbation method with the analytical results in Fig. 1 [28]. We can confirm that

both the adjoint method and the direct perturbation method give phase response functions

that agree well with the theoretical curve.

One characteristic feature of the DDEs is that even a very simple equation can exhibit

complex dynamics when the parameter is far from the bifurcation point. The phase reduction

can still be applicable to such cases as long as the coupling is weak, in contrast to the center

manifold reduction that is valid only near the bifurcation point [8]. We here calculate Z(θ)

for such cases and use it to predict the behavior of coupled oscillators. To see the system

behavior distant from the bifurcation point, we simulate Eq. (11) at (α, β) = (−0.1,−5.0)

with τ being varied as the control parameter. When τ is small, the origin is linearly stable.

As τ is increased, the origin loses its stability and the system starts to exhibits complex

orbits. The time course of x(t) and the orbit projected on the (x, dx/dt) plane are plotted

for τ = 2.5 [Figs. 2(a) and (b)] and for τ = 8 [Figs. 2(c) and (d)]. The orbit is more complex

for larger time delay (τ = 8). Z(θ) obtained by the adjoint method and by the direct

perturbation method are plotted and compared in Figs. 2(e) and (f). The adjoint method

provides appropriate Z(θ) even when the parameters are far from the bifurcation points.

We now consider two symmetrically coupled oscillators and introduce a linear coupling

L(ẋ2 − ẋ1) [or L(ẋ1 − ẋ2)] to the variables x1(t) [or x2(t)] with coupling intensity L = 0.02.

The phase difference between the two oscillators φ(t) = θ1(t) − θ2(t) then obeys φ̇(t) =

Γ
(a)
L (φ), where Γ

(a)
L (φ) = ΓL(φ)− ΓL(−φ) is given by the anti-symmetric component of the

phase coupling function ΓL(θ) =
1
T

∫ T

0
Z(t + θ/ω)L(ẋ2(t) − ẋ1(t))dt. Figures 2 (g) and (h)

display Γ
(a)
L (φ) and the transient dynamics of the phase difference for varying initial phase

differences [τ = 2.5 for (g) and τ = 8.0 for (h)]. It can be seen that initial phase differences

between two oscillators, which are uniformly distributed initially, eventually converge to

fixed phase differences predicted from the function Γ
(a)
L (φ) [29]. The number of phase-

locking points increases with τ , reflecting the increasing complexity of the limit-cycle orbit

and Z(θ). Thus, we can theoretically predict interesting phase-locking characteristics of the

coupled delay-induced limit-cycle oscillations using Z(θ) obtained by the adjoint method.

Next, we investigate a more complex model of gene regulation in which nonlinear delayed
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feedback plays an essential role,

dx(t)

dt
= k1S

(Kd)
p

(Kd)p + x(t− τ)p
− k2ET

x(t)

Km + x(t)
. (13)

We choose the parameters as k1 = 1.0, k2 = 1.0, S = 2.0, Kd = 1.0, ET = 1.0, Km = 0.1, p =

2.0 and vary the time delay τ as a control parameter [15, 28]. We restrict ourselves to the

situation where x(t) is positive. As τ becomes larger, the fixed point at x(t) = 1.09 [30]

loses stability and a limit cycle solution arises as shown in Figs. 3(a) and (b) for τ = 5. In

this case, F1 and F2 are given by

F1(t) = −k2ET
Km

(Km + x0(t))2
, F2(t) = k1S

p(Kd)
px0(t− τ)(p−1)

[(Kd)p + x0(t− τ)p]2
, (14)

and therefore the bilinear form Eq. (9) is time-dependent.

We numerically solve the adjoint problem and compare the results with the direct per-

turbation method. As shown in Fig. 3(c), both results are in good agreement. As a further

verification, we calculate 〈y
(t)∗
0 , dX

(t)
0 /dt; t〉 over an interval of 0 ≤ t < T . This quan-

tity gives the projection of the velocity dX
(t)
0 /dt of the limit cycle, which resides in the

infinite-dimensional function space C0, onto the direction along the limit cycle orbit. It

gives a scalar dθ/dt, which should be equal to the constant frequency ω. Figure 3(d) shows

〈y
(t)∗
0 , dX

(t)
0 /dt; t〉 and compares it with y

(t)∗
0 (0)(dX

(t)
0 (0)/dt), i.e., a product with only the

first term of the bilinear form Eq. (9), which we might naively expect as the projection onto

the limit-cycle solution. We can see that the proper combination 〈y
(t)∗
0 , dX

(t)
0 /dt; t〉 (green

line) is actually kept constant, namely, the phase advances constantly at a rate ω = 0.365.

In contrast, the quantity y
(t)∗
0 (0)(dX

(t)
0 (0)/dt) (red line) greatly fluctuates and does not give

the correct natural frequency ω. Only when this quantity is added to the second term of

the bilinear form Eq. (9) (blue curve), is the correct ω is obtained. This result also confirms

the validity of the adjoint method based on the bilinear form Eq. (9).

In summary, we developed an adjoint method that gives the phase response function of

limit-cycle oscillations exhibited by DDEs. We confirmed the validity of the method by

comparing the results with those obtained by direct perturbation methods as well as by

analytical computations near the bifurcation point. As examples, we considered biologi-

cal oscillations in cortico-thalamic and gene-regulatory models, and demonstrated that the

method works nicely for these systems. Moreover, we revealed that intriguing multimodal

phase-locking states can occur, in which the number of the stable phase shifts increases with

the time delay in the cortico-thalamic model.
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Our present study provides a practical theoretical framework to systematically analyze

synchronization of weakly coupled delay-induced limit-cycle oscillators, which would serve

as a powerful tool in investigating synchronization of brain activities and entrainment of

circadian rhythms to the daylight. More detailed investigations on networks of such biolog-

ical oscillators with stochastic fluctuations and their biological relevance will be discussed

elsewhere. Delay differential equations are used to describe diverse phenomena in science

and engineering, and therefore the adjoint method developed in this study should have a

wide applicability.
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FIG. 1: (Color) (a) Limit cycle oscillations and (b) the attractor projected onto the (x, dx/dt) plane

of the delay-induced limit cycle exhibited by Eq. (11). (c) Z(θ) with respect to perturbations

applied to the dx/dt component. Black broken line indicates the analytical result obtained by

the center-manifold reduction (CMR). Blue curve and brown circles are the results of the adjoint

method and the direct perturbation method, respectively.

FIG. 2: (Color) (a-d) Time course of x(t) and projection of the orbit on the (x, dx/dt) plane for

τ = 2.5 [(a) and (b)] and τ = 8 [(c) and (d)]. (e, f) Z(θ) obtained by the adjoint method (solid

line) and the direct perturbation method (dotted line). [τ = 2.5(e) and τ = 8(f)]. (g, h) Γ
(a)
L (φ)

and multi-modal phase locking of two coupled identical oscillators. [τ = 2.5(g) and τ = 8(h)].

As τ becomes large, the two oscillators tend to synchronize at more various phase differences.

Each colors indicate the predicted basin that converges to the same stationary phase difference

predicted by the adjoint method (upper panels), which is confirmed by the numerical simulations

(lower panels).

FIG. 3: (Color) (a) Time course of x(t). (b) Projection of the orbit on the (x, dx/dt) plane.

(c) Z(θ) obtained by the adjoint method (solid line) and the direct perturbation method (dotted

line). (d) Projection of the velocity dx/dt onto the phase component by the bilinear product

〈y
(t)∗
0 , dX

(t)
0 /dt; t〉 = dθ/dt. The blue curve and the red curve show the first term and the second

term of the bilinear form Eq. (9), respectively. The green curve shows the whole bilinear product.
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