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Abstract

We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses

to excite a collection of interacting two-level systems. Such a model arises in a wide range of

many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component

couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as

well as the mean field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian.

These limits provide complementary insights into the behavior of many-body systems under ARP,

suggesting our results are generally applicable. We demonstrate that ARP can be used for state

preparation in the presence of interactions, and identify the dependence of the required pulse

shapes on the interaction strength. In general interactions increase the pulse bandwidth required

for successful state transfer, introducing new restrictions on the pulse forms required.

PACS numbers: 32.80.Xx, 42.50.Ct, 42.50.Pq, 03.67.Lx
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Precise control of quantum mechanical systems is a sought after feature for applications in

quantum information and investigations of many-body quantum dynamics. Discrete atomic-

like systems, or qubits, can be excited by using external field pulses that induce Rabi oscil-

lations, with the final state determined by the intensity and duration of the pulse. However,

this method is sensitive to fluctuations in the driving field, transition energy and other

sources of disorder [1]. An alternative approach, which is robust against such variations, is

the use of frequency-swept (“chirped”) pulses to perform adiabatic rapid passage (ARP). In

this method, the frequency of the driving field is swept through the transition to be excited,

implementing the Landau-Zener process for adiabatic passage [2, 3]. Provided the gap in-

duced by the applied field is large compared with the sweep rate the process is adiabatic,

and the wavefunction is transferred from the initial ground state to the target state with

high probability. The presence of an external field creating a gap contrasts with some re-

cent analyses of many-body Landau-Zener problems [4–8] in which there is no external field

creating a gap and non-adiabatic effects appear.

ARP is a well-established technique in nuclear magnetic resonance, where chirped radio

frequency pulses are used to manipulate nuclear spins [9]. More recently, there have been a

number of investigations into using ARP with optical pulses to control excitons in quantum

dots [1, 10–12], including the creation of entangled states [13–16]. This has coincided with

growing interest in producing many-body systems with strong light-matter interactions,

such as coupled photon cavities or polaritonic systems [17]. A protocol such as ARP that

allows robust control of the quantum state in these systems would enable the investigation

of quantum dynamics in highly non-equilibrium regimes [18–21].

In established examples of ARP the interactions are weak on the scale of the level split-

tings generated by the ARP pulse, and hence the former can be straightforwardly neglected.

The aim of this paper is to demonstrate how ARP may be extended to strongly-interacting

regimes where this is not the case. We consider a model of interacting two-level systems

which, by comparison to the case of uncoupled two-level systems [1], allows the effect of

interactions to be identified. We show that ARP remains an effective approach in the inter-

acting case, provided the pulse bandwidth is sufficient to span the spectrum of the collective

modes generated by the interactions. Although our model is relatively simple, our results

are relevant across a wide range of systems, including cavity QED systems [17], quantum

dots [16, 22], superconducting qubits [23–25] and doped impurities in semiconductors [26].
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The model we consider consists of a set of N interacting two-level systems driven by an

external field (in the rotating wave approximation):

H =
∑
i

[
E

2
(σz

i + 1) + (fi(t)σ
+
i + h.c.)

]
−
∑
i,j

Jijσ
+
i σ
−
j ,

(1)

where σi are the Pauli matrices for the two-level system i, and σ±i = (σx
i ± iσy

i )/2. In

this form the two states σz
i = ±1 are understood to correspond to the presence or absence

of an excitation of the ith two-level system, e.g., of an exciton in a particular state of a

particular quantum dot. We will also refer to the collective pseudospin S =
∑

i σi/2, whose

z-component is related to the total excitation or occupation n = Sz + N/2. fi(t) is the

coherent external pulse used to perform ARP, and Jij is the interaction between systems

i and j. At this stage we assume that the energy of the excitation E > 0 is the same for

all transitions, and neglect interactions of the form σz
i σ

z
j . This model could be realized in

precisely engineered cavity [17] or circuit QED [23–25] systems. Furthermore, a less idealized

model of this form can be used to describe many realizations of interacting qubits, such as

coupled quantum dots [16, 22]. These systems often exhibit disorder in the energies E and

interaction strengths Jij, but the robustness of ARP means the general understanding we

obtain of the effect of interactions is applicable.

Decomposing the driving field into amplitude and frequency fi(t) = gi(t) exp(i
∫
ω(t′)dt′),

and eliminating the instantaneous frequency from the driving term using a unitary trans-

formation, the Hamiltonian becomes:

H =
∑
i

[
(E − ω(t))

2
(σz

i + 1) + (gi(t)σ
+
i + h.c.)

]
−
∑
i,j

Jijσ
+
i σ
−
j .

(2)

For the discussion in this paper, we consider a Gaussian, linearly chirped pulse with uniform

amplitude,

gi(t) = g exp(−t2/τ 2), ω(t) = E + αt, (3)

where g parametrizes the pulse amplitude, τ is the temporal width of the pulse and α is

the linear chirp. We discuss the pulse and system parameters in terms of the dimensionless

combinations gτ , Jτ and ατ 2 (~ = 1). For α = 0, Eq. (3) becomes a Rabi pulse centered at

frequency E, with a pulse area proportional to gτ .
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In the non-interacting case where J = 0, the use of ARP to transfer the two-level systems

from the ground state σz = −1 to the excited state is well understood [1]. For g = 0, the

energies of the two levels cross when E+ω(t) = 0. The presence of the field g 6= 0 produces

an avoided crossing and the adiabatic state smoothly varies from the initial ground state

to the excited state. When the pulse amplitude is time independent, g(t) = g, the model

reduces to the canonical Landau-Zener problem [2, 3]. The probability of remaining in the

adiabatic state (and so being transferred from the initial ground state to the excited state) is

1− exp(−2πg2/α), so that the final population is always increased by reducing the chirp α,

increasing the adiabaticity of the process. In the case of ARP, using pulses of finite duration,

g(t) is no longer constant. Thus, in order for adiabatic passage to occur, the two levels of the

system must be coupled together long enough that the character of the eigenstates changes

sufficiently slowly. This introduces the requirement that α � 1/τ 2 [1]. In the limit α → 0,

the system undergoes Rabi oscillations rather than ARP.

In order to understand how this process generalizes to the interacting case, we first

examine a one-dimensional chain with nearest neighbor interaction Jij = Jδi,i+1. In this

case, the energy levels for g = 0 can be determined using the Jordan-Wigner transformation

σz
i = 2c†ici − 1, σ−i = exp(iπ

∑
j<i c

†
jcj)ci = Tici where ci are fermionic operators [27]. After

also performing a Fourier transformation the Hamiltonian, Eq. (2), becomes:

H = −
∑
k

[αt+ J cos k]c†kck +
1√
N

∑
k,i

(g∗i Ticke
ikri + h.c.), (4)

where N is the number of sites and k = −π + 2πm/N with m integer. The Jordan-Wigner

transformation has previously been used to describe Landau-Zener transitions for anisotropic

spin chains in a changing magnetic field [4, 28]. The Landau-Zener transitions in that model

result from the anisotropy, which affects the subspaces spanned by fermion operators of a

given |k| independently. In contrast, the spatial dependence of the nonlinear Ti term in our

model leads to terms in the Hamiltonian that couple fermion states with different |k|.

In the Jordan-Wigner representation the different energy eigenstates correspond to differ-

ent occupations of the fermion states. The completely empty (spin down) state corresponds

to the vacuum with no fermions |0〉. Likewise, the completely occupied (spin up) state cor-

responds to the case with all fermion states filled,
∏

k c
†
k |0〉. For large |t| the first term in

Eq. (4) dominates and the eigenstates, shown in Fig. 1 for the few-body case N = 4, are split

into N + 1 bands labelled by the total number of fermions, which physically corresponds to
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the excited-state population of the two-level systems n. Considering the eigenstate structure

from the few-body limit is useful since, as we will show, it can be used to understand results

in the thermodynamic limit and it has been extensively studied [29–35].

In the non-interacting case, the energy levels are independent of k and all the states in

the nth band have energy −nαt. The presence of interactions, J 6= 0, lifts the complete

degeneracy of states within each band as shown in Fig. 1. The separate states correspond

to the different allowed values of the total spin S2 for a given Sz. In order to prepare a fully

occupied state, the quantum state must then be transferred via multiple level crossings from

the n = 0 to n = N bands [29, 36].
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FIG. 1. (Color online) Time-dependent eigenenergies of the one-dimensional chain, Eq. (4), with

g = 0, J = 1
2 and N = 4 sites. Different colors indicate bands corresponding to different values

for the occupation n of the two-level systems. Bold lines show the states in each band with

maximum S2, which are coupled together when the pump is spatially uniform. Dotted lines are

other eigenstates of the system, which have different values of S2. The vertical dashed lines show

the separation in time between the crossing of the n = 0 band with the n = 1 (A) and n = N (B)

states. Inset: As main figure but with J = −1
2 . Note that the order of crossings of the coupled

(bold) levels has reversed.

The splitting of the level crossings that allows adiabatic state transfer is introduced by

the external pulse field g. In the general case there will be some variation in the driving field

between the two-level systems, which makes the form of the coupling term in the fermionic

representation complicated to determine due to the non-locality of the Jordan-Wigner string
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Ti. However, for the uniform driving we consider [gi(t) = g(t)], the coupling to the field in

the untransformed Hamiltonian, Eq. (2), can be rewritten g(t)
∑

i(σ
+
i +σ−i ) = g(t)(S++S−),

and the transitions therefore conserve S2. If the system starts in the ground state, it will

thus always be in an eigenstate of S2 with the maximal eigenvalue S(S+1) where S = N/2.

There is one state in each band with this value of S2, and the transitions between these

states have matrix elements g
√

(N − n) [(n+ 1/2)± 1/2]. The corresponding states in each

band are the most symmetrical states, which for J > 0 (J < 0) have the lowest (highest)

energies, see Fig. 1 (Fig. 1 inset) [37]. The finite N model in this limit is then similar to one

used to describe adiabatic control of rotational states in molecules [38].

The field term in the Hamiltonian only changes the number of fermions, n, by ±1. An

avoided crossing between non-adjacent bands can be induced by higher order virtual transi-

tions. For example, a n→ (n+2)th band transition is possible via an intermediate (n+1)th

band state. These higher-order interactions are suppressed in the N →∞ mean-field limit

discussed below [36, 39], but do play a role in ARP if the connectivity is small [38].

The Jordan-Wigner transformation is only usefully applicable for the special case of

nearest-neighbor hopping in one dimension. In higher dimensions, an alternative approach

is to use the mean field approximation, which is exact in the limit N → ∞, Jij = J/N2.

We show in Fig. 2 results for the final occupation obtained using a spatially uniform pulse,

Eq. (3), calculated by solving the Heisenberg equations of motion using the mean field

replacement
∑

ij Jijσ
+
i σ
−
j =

∑
i Jeff(σ+

i

〈
σ−i
〉

+h.c.). In this approximation the Hamiltonian,

Eq. (2), can be rewritten in terms of the collective spin operators as the Lipkin-Meshkov-

Glick Hamiltonian:

HMF = −Jeff(S+S− + S−S+)− αt

2
Sz + 2gSx

= 2Jeff(Sz)2 − αt

2
Sz + 2g(t)Sx,

(5)

where we have used S2 = (Sz)2 + (S+S− + S−S+)/2 and dropped terms which do not

affect the dynamics. This Hamiltonian, with a time independent g(t) = g, has been used to

describe Landau-Zener tunneling for a bosonic Josephson junction [36, 39–43].

Figure 2 consists of a fan of non-zero occupation bounded by large regions of essentially

zero occupation. The features of this result can be understood by using the intuition from

considering a finite set of N level crossings, as illustrated in Fig. 1. Within the fan, as in the

normal Landau-Zener problem, increasing α decreases the final occupation as the increased
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FIG. 2. Mean-field calculation of the average excitation of a set of interacting two-level systems,

Eq. (2), driven from its ground state by the chirped pulse, Eq. (3) with gτ = 3. Jτ is the dimen-

sionless interaction strength, and ατ the dimensionless chirp. The regions where no excitations

are created are a result of the finite duration of the pulse τ : as the chirp α is reduced, the level

crossings of Fig. 1 no longer occur within the pulse and so adiabatic transfer is not possible. The

boundary of this region is approximately α ∝ J .

velocity of the level crossing reduces the adiabaticity of the transition.

For a fixed value of α, the occupation within the fan increases (decreases) for J > 0

(J < 0). This variation corresponds to the changing relative positions of the level crossings,

visible in Fig. 1 for the one-dimensional chain. In the absence of interactions, J = 0, the

states within each band are degenerate and so all levels cross simultaneously at t = 0. As

the interaction strength J is increased, the level crossings separate in time. As each level

degeneracy becomes more isolated, the size of the avoided crossing caused by g increases.

When J > 0 and α > 0 the crossings occur in “ascending order”, i.e. the n→ n+ 1 crossing

occurs before the n + 1 → n + 2 crossing. The increase in splitting due to the isolation

of crossings then improves the efficiency of transfer to the occupied state, producing the

increase of the occupation shown in Fig. 2. If J < 0, however, then for positive chirp the

crossings occur in the “wrong order” (see Fig. 1, inset), so that it becomes more difficult for

the system state to transfer via a series of transitions through adjacent bands, suppressing

the probability of full occupation. In the mean field limit, this ordering leads to the formation

of a swallowtail in the energy level evolution which causes a breakdown of adiabaticity and

a corresponding reduction in the occupation [36, 40–42].
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The large regions of zero occupation that define the fan are a result of the time dependence

of the optical pulse g(t) used to perform ARP. In order for the state to be transferred at a level

crossing, the avoided crossings caused by the field g(t) must be large enough compared to the

level velocity α to make the process adiabatic. Because ARP uses pulses of a finite duration

there is only a limited window during which g(t) meets this criterion. With no interaction,

J = 0, all crossings occur simultaneously and so may all occur within the window. In the

presence of interactions, eventually the time of the first level crossing J/α ∼ τ , and it will

be pushed out of the pulse. Neglecting the change in avoided crossing size discussed above

and the effect of higher order, virtual transitions, the crossover to non-adiabatic behavior

occurs along a line J ∝ α, which is approximately what is seen in Fig. 2. Below this line,

the behavior is no longer adiabatic and the system undergoes more complicated dynamics,

reducing to nonlinear Rabi oscillations for α = 0. Thus a pulse used to perform ARP in

a large system must have a sufficient duration τ that it includes the entire region of level

crossings separated by the interaction.

In conclusion, we have shown the consequences of inter-system interaction on using ARP

to fully occupy an ensemble of many two level systems. The interaction lifts the degeneracy

of the eigenstates of the Hamiltonian, Eq. (1), and causes the level crossings at which state

transfer occurs to separate in time. As in the bosonic Josephson junction [36, 40–42], the

isolation of each degeneracy increases the effective splitting so that adiabatic transfer can

be achieved for larger chirps than in the non-interacting system. However, the separation

of level crossings also introduces the additional condition for ARP that the pulse duration

(or chirp) should be large enough to include all the necessary crossings, increasing with J .

Physically, this occurs because the interactions broaden the spectrum into a set of collective

modes forming a path from the ground to final states, and the pulse must cover this spectrum

for the state preparation to be effective.

Although in this paper we have focused on the ideal case of uniform E, J and coupling

gi, our results apply more generally. Fluctuations in E and J will change the energies

and character of the intermediate states so that they are not delocalized across the system.

However, for |t| → ∞, the highest and lowest states remain the empty or full states, so our

results will still apply. Variation in gi changes the size of splittings at a level crossing but,

with the exception of fine-tuned cases, avoided crossings will still form, allowing adiabatic

transfer.

8



As the model discussed in this paper represents limits of more complicated many-body

systems including the Bose-Hubbard, Dicke or Jaynes-Cummings-Hubbard models [17, 23,

44], these results can be used as a basis for understanding the behavior of ARP in these

models. It could then be used as a robust method of preparing far-from-equilibrium states

in those systems for use in quantum information contexts or as equivalents of the quantum

quenches performed in ultracold atomic gases.
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