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Using a sample of 106 million ψ(3686) events collected with the BESIII detector at the BEPCII
storage ring, we have made the first measurement of the M1 transition between the radially excited
charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: ψ(3686) →



3

γηc(2S). Analyses of the processes ψ(3686) → γηc(2S) with ηc(2S) → K0
SK

±π∓ and K+K−π0

give an ηc(2S) signal with a statistical significance of greater than 10 standard deviations under a
wide range of assumptions about the signal and background properties. The data are used to ob-
tain measurements of the ηc(2S) mass (M(ηc(2S)) = 3637.6 ± 2.9stat ± 1.6sys MeV/c2), width
(Γ(ηc(2S)) = 16.9 ± 6.4stat ± 4.8sys MeV), and the product branching fraction (B(ψ(3686) →
γηc(2S)) × B(ηc(2S) → KK̄π) = (1.30 ± 0.20stat ± 0.30sys) × 10−5). Combining our result with a
BaBar measurement of B(ηc(2S) → KK̄π), we find the branching fraction of the M1 transition to
be B(ψ(3686) → γηc(2S)) = (6.8± 1.1stat ± 4.5sys)× 10−4.

PACS numbers: 13.25.Gv, 13.20.Gd, 14.40.Pq

The quarkonium states play an important role in un-
derstanding the strong interaction between the quarks.
The charmonium states below the open-charm produc-
tion threshold are relatively well understood, with the
notable exception of the spin singlets [1], which include
the P -wave state hc and the S-wave ground state ηc and
its first radial excitation ηc(2S) [2]. These are experi-
mentally challenging because of the low production rates
and spin-parity quantum numbers that are inaccessible
in direct e+e− annihilations.

The ηc(2S) was first observed by the Belle collab-
oration in the process B± → K±ηc(2S), ηc(2S) →
K0
SK

±π∓ [3]. It was confirmed in the two-photon
production of K0

SK
±π∓ [4, 5], and in the double-

charmonium production process e+e− → J/ψcc̄ [6, 7].
Combining the world-average values [2] with the most re-
cent results from Belle and BaBar on two-photon fusion
into hadronic final states other than K0

SK
±π∓ [8, 9], one

obtains updated averages of the ηc(2S) mass and width
of 3637.7±1.3 MeV/c2 and 10.4±4.2 MeV, respectively.

The production of the ηc(2S) through a radiative tran-
sition from the ψ(3686) requires a charmed-quark spin-
flip and, thus, proceeds via a magnetic dipole (M1)
transition. The branching fraction has been calcu-
lated by many authors, with predictions in the range
B(ψ(3686) → γηc(2S)) = (0.1 − 6.2) × 10−4 [10]. A
recent calculation [11] that includes contributions from
loops containing meson pairs finds a strong cancellation
that results in a partial width of (0.08 ± 0.03) keV and
a branching fraction of (2.6± 1.0)× 10−4; while a calcu-
lation using the light-front quark model and a 2S state
harmonic oscillator wave function to present the 2S char-
monium state gives a transition rate of 3.9 × 10−4 [12].
Experimentally, this transition has been searched for by
Crystal Ball [13], BES [14], CLEO [15] and most recently
by BESIII through ηc(2S) → V V [16]. No convincing
signal was observed in any of these searches.

In this Letter, we report the first observation of
ψ(3686) → γηc(2S), with ηc(2S) → K0

SK
±π∓ and

K+K−π0. The data sample for this analysis consists of
an integrated luminosity of 156 pb−1 (106 million events)
produced at the peak of the ψ(3686) resonance [17] and
collected in the BESIII detector [18]. An additional
42 pb−1 of data were collected at a center-of-mass energy
of

√
s=3.65 GeV to determine non-resonant continuum

background contributions.

The BESIII detector, described in detail in Ref. [18],
has an effective geometrical acceptance of 93% of 4π.
A small-cell, helium-based main drift chamber (MDC)
in a 1-T magnetic field provides a charged-particle mo-
mentum resolution of 0.5% at 1 GeV/c, and specific-
ionization (dE/dx) measurements for particle identifica-
tion with a resolution better than 6% for electrons from
Bhabha scattering. The cesium iodide electromagnetic
calorimeter (EMC) measures photon energies with reso-
lutions at 1.0 GeV of 2.5% and 5% in the detector’s barrel
(|cosθ| < 0.8, where θ is the polar angle with respect to
the e+ direction) and endcaps (0.86 < |cosθ| < 0.92) re-
gions, respectively. Additional particle identification is
provided by a time-of-flight system (TOF) with a time
resolution of 80 ps (110 ps) for the barrel (endcaps).

Reconstructed charged tracks other than daughters of
K0
S candidates are required to pass within 1 cm of the

e+e− annihilation interaction point (IP) transverse to the
beam line and within 10 cm of the IP along the beam
axis. Each track is required to have a good-quality fit
and to satisfy the condition |cosθ| < 0.93. Charged-
particle identification (PID) is based on combining the
dE/dx and TOF information to construct a χ2

PID(i). The
values χ2

PID(i) and the corresponding confidence levels
ProbPID(i) are calculated for each charged track for each
particle hypothesis i (pion, kaon or proton).

A neutral cluster in the EMC must satisfy fiducial and
shower-quality requirements to be accepted as a good
photon candidate. Showers must have a minimum energy
of 25 MeV and be detected in either the barrel or endcap
regions, as previously defined. EMC timing requirements
are used to suppress noise and energy deposits unrelated
to the event.

In selecting γK0
SK

±π∓ (γK+K−π0) events, the decay
signal K0

S → π+π− (π0 → γγ) is used to tag the K0
S

(π0). Candidate events must therefore have exactly four
(two) charged tracks with zero net charge and at least one
(three) good photon(s) for the γK0

SK
±π∓ (γK+K−π0)

decay mode.

K0
S candidates are selected with secondary-vertex fits

to all pairs of oppositely charged tracks in the event,
assuming pion masses. The combination with the best
fit quality is chosen and the event is kept for further
analysis if the invariant mass is within 7 MeV/c2 of the
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expected K0
S mass, and the secondary vertex is at least

0.5 cm from the interaction point. To suppress γK0
SK

0
S

events, the remaining tracks are required not to form a
good K0

S candidate. The fitted K0
S information is used

as input for the subsequent kinematic fit of the complete
event.

The γK0
SK

±π∓ candidates are then subjected to a
four-constraint (4C) kinematic fit, with the constraints
provided by four-momentum conservation. The dis-
crimination of charge-conjugate channels (K0

SK
+π− or

K0
SK

−π+) and the selection of the best photon among
multiple candidates are achieved by minimizing χ2 =
χ2
4C +χ2

PID(K)+χ2
PID(π), where χ

2
4C is the chi-square of

the 4C kinematic fit. Events with χ2
4C < 50 are accepted

as γK0
SK

±π∓ candidates. For γK+K−π0 candidates,
both charged tracks must satisfy the criterion that the
kaon-hypothesis probability ProbPID(K) is larger than
both 0.001 and the probability of any other hypothesis.
A five-constraint (5C) kinematic fit, with the π0 mass
as the additional constraint, is used to select the best
transition photon and the π0 → γγ combination. Events
with χ2

5C < 30 are accepted as γK+K−π0 candidates.

We use the program lundcrm [19] to generate inclu-
sive Monte Carlo (MC) events for background studies.
The signal is generated with the expected angular dis-
tribution for ψ(3686) → γηc(2S), and the subsequent
ηc(2S) → K0

SK
±π∓ and K+K−π0 decays are generated

according to phase space. The detector response is sim-
ulated with a geant4-based package [20] that has been
tuned to match the performance of the detector compo-
nents.

The ψ(3686) → γηc(2S), ηc(2S) → K0
SK

±π∓

(K+K−π0) signal suffers significantly from background
contributions from leptonic J/ψ decays and J/ψ →
K+K− in ψ(3686) → π+π−J/ψ, and ψ(3686) → ηJ/ψ
with η → π+π−π0 (γγ). For the γK0

SK
±π∓ channel,

these background contributions are suppressed by re-
quiring that the recoil mass of all π+π− pairs be less
than 3.05 GeV/c2. For the γK+K−π0 channel, this type
of contamination is removed by requiring that the in-
variant mass of the two charged tracks, assuming they
are muons, to be less than 2.9 GeV/c2. The remain-
ing dominant background sources are (1) ψ(3686) →
K0
SK

±π∓ (K+K−π0) events with a fake photon can-
didate; (2) events with the same final states including
K0
SK

±π∓γISR/FSR (K+K−π0γISR/FSR) with the pho-
ton from initial- or final-state radiation (ISR, FSR) and
ψ(3686) → ωK+K− with ω → γπ0; and (3) events with
an extra photon, primarily from ψ(3686) → π0K0

SK
±π∓

(π0K+K−π0) with π0 → γγ. MC studies demonstrate
that contributions from all other known processes are
negligible.

The events in the first category, with a fake photon
incorporated into the kinematic fit, produce a peak in
the K0

SK
±π∓ (K+K−π0) mass spectrum close to the

expected ηc(2S) mass, with a sharp cutoff due to the
25-MeV photon-energy threshold.

Because the fake photon adds no information to the fit,
its inclusion distorts the mass measurement. We there-
fore determine the mass from a modified kinematic fit
in which the the magnitude of the photon momentum
is allowed to freely float (3C for γK0

SK
±π∓ and 4C for

γK+K−π0). In the case of a fake photon, the momentum
tends to zero, which improves the background separation
with minimal distortion of the signal line shape [16].

Background contributions from ψ(3686) → K0
SK

±π∓

(K+K−π0) and ψ(3686) → K0
SK

±π∓γFSR
(K+K−π0γFSR) are estimated with MC distribu-
tions for those processes normalized according to a
previous measurement of the branching ratios [21].
FSR is simulated in our MC with photos [22], and
the FSR contribution is scaled by the ratio of the
FSR fractions in data and MC for a control sample
of ψ(3686) → γχcJ (J = 0 or 1) events. For this
study the χcJ is selected in three final states with or
without an extra FSR photon, namely K0

SK
±π∓(γFSR),

π+π−π+π−(γFSR), and π+π−K+K−(γFSR), as de-
scribed in Ref. [16]. Background contributions from
the continuum process e+e− → γ∗ → K0

SK
±π∓(γFSR)

(K+K−π0(γFSR)) and the ISR process e+e− →
γ∗γISR → K0

SK
±π∓γISR (K+K−π0γISR) are estimated

with data collected at
√
s = 3.65 GeV corrected for

differences in the integrated luminosity and the cross
section, and with particle momenta and energies scaled
to account for the beam-energy difference. MC simula-
tions show that the K0

SK
±π∓ (K+K−π0) mass spectra

are similar for FSR and ISR events. Events without
radiation have the same mass distribution independently
of originating from a resonant ψ(3686) decay or from
the non-resonant continuum production. Thus, the
background shapes from K0

SK
±π∓ (K+K−π0) and

K0
SK

±π∓γISR/FSR (K+K−π0γISR/FSR) are described by
the sum of the MC-simulated K0

SK
±π∓ (K+K−π0) and

K0
SK

±π∓γFSR (K+K−π0γFSR) invariant-mass shapes,
with the proportions fixed according to the procedure
described above. The shapes of background mass
distributions from ψ(3686) → ωK+K− with ω → γπ0

are parameterized with a double-Gaussian function, and
its level is measured with the same data sample and
fixed in the final fit.

The third type of background, that with an extra pho-
ton, π0K0

SK
±π∓ (π0K+K−π0), is measured with data

and normalized according to the simulated contamina-
tion rate. It contributes a smooth component around
the χcJ (J = 1, 2) mass region with a small tail in the
ηc(2S) signal region that is described by a Novosibirsk
function [23] (Gaussian function) for the π0K0

SK
±π∓

(π0K+K−π0) background. The shape and size of this
background is fixed in the fit.

The mass spectra for the K0
SK

±π∓ and K+K−π0
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channels are fitted simultaneously to extract the yield,
mass and width of ηc(2S). To better determine the back-
ground and mass resolution from the data, the mass spec-
tra are fitted over a range (3.46-3.71 GeV/c2) that in-
cludes the χc1 and χc2 resonances as well as the ηc(2S)
signal. The final mass spectra and the likelihood fit re-
sults are shown in Fig. 1. Each fitting function includes
four components, namely the ηc(2S), χc1, χc2, and the
summed background described above. Line shapes for
the χc1 and χc2 are obtained from MC simulations and
convolved with Gaussian functions to accommodate the
mass-scale and resolution differences from data. For both
modes, the χc1 and χc2 widths are fixed to the PDG val-
ues [2]. Based on MC studies, the mass shift and res-
olution for the resonances are found to vary linearly as
a function of the K0

SK
±π∓ (K+K−π0) invariant mass.

These parameters are extrapolated from the χc1 and χc2
to the ηc(2S).

The line shape for the ηc(2S) produced in the M1
transition of the ψ(3686) is assumed to have the form
(E3

γ × BW (m) × fd(Eγ) × ǫ(m)) ⊗ G(δm, σ), where m
is the invariant mass of the K0

SK
±π∓ or K+K−π0,

Eγ = (m2
ψ(3686) − m2)/2mψ(3686) is the energy of the

transition photon in the rest frame of ψ(3686), BW (m)
is the Breit-Wigner function for ηc(2S), fd(Eγ) is a func-
tion that damps the diverging tail originating from the
E3
γ dependence, ǫ(m) is the mass-dependent efficiency

function determined by a full simulation of the signal,
and G(δm, σ) is a Gaussian function describing the mass
shift and the detector resolution. For the damping func-
tion we use a functional form introduced by the KEDR
collaboration [24]: fd = E2

0/[EγE0 + (Eγ − E0)]
2, where

E0 = (m2
ψ(3686) −m2

ηc(2S)
)/2mψ(3686) is the peak energy

of the transition photon. To assess the sensitivity of our
results to the choice of this function, we also consider an

alternative form used by CLEO [25]: fd = exp(− E2
γ

8β2 ),

with CLEO’s fitted value of β = (65.0± 2.5) MeV.

The fit shown in Fig. 1 has a χ2 of 72 for 79 degrees
of freedom. The results for the yields of ηc(2S) events
are 81 ± 14 for the K0

SK
±π∓ channel and 46 ± 11 for

the K+K−π0 channel. Consistent yields are found for
separate fits to the two channels [26]. The K0

SK
±π∓

channel determines primarily the precision for the ηc(2S)
mass and width measurements in the simultaneous fit
with the results Mηc(2S) = 3637.6 ± 2.9 MeV/c2 and
Γηc(2S) = 16.9 ± 6.4 MeV, respectively. The combined
statistical significance of the signal in the two modes is
11.1σ, which is obtained by comparing the likelihoods of
the fits with and without the ηc(2S) signal. The robust-
ness of this result was tested by considering variations
of the resonant line shapes, background assumptions and
other systematic effects. In all the cases, the statistical
significance is found to be larger than 10.2σ.

Combining the observed number of signal events with
the efficiencies of 25.6% and 20.2% for the K0

SK
±π∓ and

K+K−π0 final states, respectively, from full simulations
of the signal with the measured ηc(2S) mass and width,
we find the product branching fractions B(ψ(3686) →
γηc(2S))×B(ηc(2S) → K0

SK
±π∓) = (4.31±0.75)×10−6,

and B(ψ(3686) → γηc(2S)) × B(ηc(2S) → K+K−π0) =
(2.17 ± 0.52) × 10−6, where the errors are statistical
only. The ratio of the branching fractions agrees well
with the isospin symmetry expectation of 2:1 between
K0
SK

±π∓ and K+K−π0. The product branching frac-
tion for ψ(3686) → γηc(2S), ηc(2S) → KK̄π can be
obtained by doubling the sum of the K0

SK
±π∓ and

K+K−π0 branching fractions to obtain B(ψ(3686) →
γηc(2S)) × B(ηc(2S) → KK̄π) = (1.30 ± 0.20) × 10−5,
where the error takes into account the correlation be-
tween the two measured branching fractions from the si-
multaneous fit.

The systematic uncertainties in the branching frac-
tion, ηc(2S) mass and ηc(2S) width measurements
are summarized in Table I. The uncertainties due
to the choice of the background shape, the damp-
ing function, the fitting range and the linear extrap-
olated mass shift for ηc(2S) are common among the
three measurements and are determined together. The
systematic errors in the mass and width due to the
K0
SK

±π∓(γISR/FSR) (K+K−π0(γISR/FSR)) background
shape are evaluated by changing the relative ratio of
the K0

SK
±π∓ (K+K−π0) background events with and

without radiation. The uncertainties from π0K0
SK

±π∓

(π0K+K−π0) background shape are estimated by chang-
ing the function parameterizing the measured mass spec-
trum. The uncertainty due to the choice of damping func-
tion is estimated from the difference between results ob-
tained with the default (KEDR) and alternative (CLEO)
functional forms. The uncertainties due to the choice
of fitting range are estimated by taking the largest dif-
ferences between results found with the standard fitting
range and those obtained using alternative ranges. The
uncertainties from the linear extrapolation of the mass
shifts from χc1 and χc2 to ηc(2S) are estimated from the
maximum changes in the fitting results obtained by vary-
ing the mass shifts within their errors.

The branching fraction measurement is affected by
additional effects that enter through the yield determi-
nation, including those associated with charged-particle
tracking, photon reconstruction, particle identification,
K0
S reconstruction, and kinematic fitting (χ2 require-

ment), all of which are estimated with control samples in
the data [27]. The effect of the uncertainty in the dynam-
ics of the decay ηc(2S) → K0

SK
±π∓ (K+K−π0), which

is treated as phase space in our default signal MC, is esti-
mated with an alternative MC replicating the Dalitz dis-
tribution of ηc(2S) → K0

SK
±π∓ decay recently measured

by the Belle collaboration [28]. A 0.8% (3.0%) relative
difference in the efficiency was found between the default
and alternative MC samples for K0

SK
±π∓ (K+K−π0),
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FIG. 1: The invariant-mass spectrum for K0
SK

±π∓ (left panel), K+K−π0 (right panel), and the simultaneous likelihood fit to
the three resonances and combined background sources as described in the text.

TABLE I: The absolute systematic uncertainties in the ηc(2S)
mass (in MeV/c2), width (in MeV) and the relative sys-
tematic error (in %) in BB, the product branching fraction
B(ψ(3686) → γηc(2S))× B(ηc(2S) → KK̄π), measurements.

Source Mass Width BB
Background shape 1.3 2.6 9.9
Damping function 0.7 4.0 19.6
Fitting range 0.1 0.4 1.3
Mass shift 0.6 0.2 0.4
Tracking - - 4.0
Photon reconstruction - - 1.3
Particle identification - - 1.3
K0

S reconstruction - - 2.3
Kinematic fitting - - 3.9
ηc(2S) decay dynamics - - 1.5
Number of ψ(3686) events - - 4.0
Total 1.6 4.8 23.3

leading to a 1.5% difference in the total branching ratio,
which we take as a systematic error. Finally, there is
an overall 4% uncertainty in the branching fraction as-
sociated with the determination of the total number of
ψ(3686) events in our data sample [17].

We assume that all the sources of systematic uncertain-
ties are independent and combine them in quadrature to
obtain the overall systematic uncertainties given in Ta-
ble I. The total systematic uncertainties on the mass
and width measurements are 1.6 MeV/c2 and 4.8 MeV,
respectively; the total relative systematic uncertainty on
the product branching fraction B(ψ(3686) → γηc(2S))×
B(ηc(2S) → KK̄π) is 23.3%. Using the measurement of
B(ηc(2S) → KK̄π) = (1.9± 0.4± 1.1)% from the BaBar
experiment [29], we find an M1-transition branching frac-
tion of B(ψ(3686) → γηc(2S)) = (6.8± 1.1± 4.5)× 10−4,
where the systematic error is dominated by that of the
BaBar result.

In summary, we report the first observation of the
M1 transition ψ(3686) → γηc(2S) through the decay
processes ψ(3686) → γK0

SK
±π∓ and γK+K−π0. We

measure the mass of the ηc(2S) to be 3637.6 ± 2.9 ±
1.6 MeV/c2, the width 16.9 ± 6.4 ± 4.8 MeV, and the
product branching fractions B(ψ(3686) → γηc(2S)) ×
B(ηc(2S) → KK̄π) = (1.30 ± 0.20 ± 0.30) × 10−5,
where the quoted uncertainties are statistical and sys-
tematic, respectively. The main systematic limitations
to these measurements arise from the choice of the func-
tional form for the damping factor in the ηc(2S) line
shape and from uncertainty in the choice of the back-
ground line shapes. Where previously published values
and limits exist our results are consistent with those, and
the branching-fraction measurement of the M1 transition
ψ(3686) → γηc(2S) of (6.8±1.1±4.5)×10−4 agrees with
theoretical calculations and naive estimates based on the
J/ψ → γηc transition [15].
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