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We develop a Green’s function approach to quasiparticle excitations of open-shell systems within
the GW approximation. It is shown that accurate calculations of the characteristic multiplet struc-
ture require a precise knowledge of the self energy and, in particular, its poles. We achieve this by
constructing the self energy from appropriately chosen mean-field theories on a fine frequency grid.
We apply our method to a two-site Hubbard model, several molecules and the negatively charged
nitrogen-vacancy defect in diamond, and obtain good agreement with experiment and other high-
level theories.

Introduction.—In nature, there exists a wide range of
electronic systems with open shells, including most atoms
and many molecules, but also defects in crystalline solids.
These systems play important roles in many areas of con-
densed matter physics, chemistry and biology: for ex-
ample, the negatively charged nitrogen-vacancy (NV−)
defects in diamond are used for biological imaging [1, 2]
and are also promising candidates for qubits in quantum
computers [3–5].
It is therefore important to develop theoretical meth-

ods to study open-shell systems and their properties.
While for closed-shell systems a well-established set of
methods exists, ranging from wave function-based quan-
tum chemistry approaches to density-functional theory
(DFT) and Green’s function based many-body perturba-
tion theory, the accuracy of these methods when applied
to open-shell systems is less certain: Even the applica-
tion of wave function-based methods to small open-shell
molecules is far from straightforward [6] and standard
density functionals are known to break the orbital and
spin degeneracy of the ground state [7, 8].
A Green’s function approach to electron excitations in

open-shell molecules was first considered by Cederbaum
and coworkers [9, 10] in the 1970’s. Later highly accurate
Green’s function approaches were developed for quantum
chemistry applications including open-shell systems[11–
15]. Previous applications of Green’s function theory to
open-shell systems using the GW approximation [16, 17]
had either carefully selected reference states to avoid
complications associated with the open-shell [18] or ig-
nored the degenerate ground-state problem [19, 20].
In this Letter, we extend the GW approach to open-

shell systems. Calculations on several prototypical sys-
tems are performed: a two-site Hubbard cluster, four
molecules (nitrogen dioxide, oxygen, nitrogen difluoride,
chlorine dioxide) and the NV− center in diamond. We
find our approach is capable of describing these systems
with quantitative accuracy. We have identified and im-
plemented two important elements for accurate results in
GW calculations of open-shell systems: i) a careful choice
of the mean-field starting point providing accurate self-

energy pole positions, and ii) a method for evaluating the
self energy on a fine frequency grid.
Theory.—In a photoemission experiment with photons

of energy ωphoton (setting ~ = 1), the photocurrent J(ǫk)
due to photoelectrons with momentum k and energy ǫk
is given by [21]

J(ǫk) =
∑

ij

∆ki∆jkAij(ǫk − ωphoton), (1)

where ∆ki = 〈k|∆dipole|ψi〉 and Aij(ω) =
〈ψi|A(r, r

′, ω)|ψj〉 denote matrix elements of the
dipole operator and the spectral function, respectively,
with ψi being an appropriate single-particle orbital.
Neglecting off-diagonal matrix elements for an ap-
propriately chosen physical set of orbitals, we obtain
Ajj(ω) = 1/π|ImGjj(ω)| by computing the interacting
Green’s function (here we give the electron removal
part)

Gjj(ω) =
∑

λ

|〈N − 1, λ|cj|N, 0〉|
2

ω − Eλ − iη
(2)

with Eλ = E
(N)
0 −E

(N−1)
λ . Here, |N, 0〉 and E

(N)
0 denote

the N -particle ground state and its energy, respectively,
while |N − 1, λ〉 denotes an (N − 1)-particle state (with
λ being an appropriate set of quantum numbers) with

energy E
(N−1)
λ . Also, cj is the destruction operator for

an electron in orbital j and η = 0+.
Eλ solves the quasiparticle equation

Eλ = ǫj +Σjj(Eλ)− V xc
jj , (3)

where ǫj and V xc
jj denote the orbital energy and a diago-

nal matrix element of the exchange-correlation potential
from a mean-field calculation, respectively, while Σjj(ω)
is a diagonal matrix element of the self-energy operator.
The quasiparticle equation [Eq. (3)] follows from

Dyson’s equation [22]

G−1
ij (ω) = G−1

0,ij(ω)− Σij(ω) + V xc
ij , (4)
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which relates the interacting Green’s function to the
mean-field Green’s function G0,ij(ω) via the self energy.
The standard derivation of Dyson’s equation [22] assumes
the existence a nondegenerate interacting ground state
which evolves into a nondegenerate single Slater determi-
nant state as the interactions are adiabatically turned off.
The hallmark of open-shell systems, however, is the exis-
tence of multiple degenerate ground states which do not
generally evolve into noninteracting single Slater deter-
minant states [23]. If — for a particular ground state —
the resulting noninteracting state is a sum of Slater deter-
minants, one has to employ the methods of quantum field
theory with initial correlations and replace Dyson’s equa-
tion with a more complicated expression [23, 24]. In our
calculations, we avoid this difficulty by carefully choosing
a ground state (among the multiple ground states) which
evolves into a single Slater determinant such that Dyson’s
equation is valid. As shown in Ref. [10], the Green’s func-
tion computed from such a specific ground state provides
information on all the quasiparticle multiplet levels of the
N-1 and N+1 system in an ensemble averaged measure-
ment. In particular, we work with the ground state with
the highest magnetic quantum number because there ex-
ists a corresponding single Slater determinant with the
same properties (i.e., it is also an eigenstate of the total
spin and/or orbital angular momentum operator with the
same eigenvalue) [10]. An approximation to this partic-
ular ground state is provided by standard spin-polarized
mean-field calculations. We note that it is not always
possible to find a single determinant ground state. How-
ever, such a state must exist whenever Hund’s rules apply
indicating a broad range of validity of our approach in-
cluding many systems containing d- and f-electrons.

In closed-shell systems, Eq. (3) typically has a single
solution leading to a pronounced quasiparticle peak in
Ajj(ω) which corresponds to the removal of an electron
from orbital j [25]. In open-shell systems, the orbital
and spin angular momenta of the electrons in the un-
filled shells can couple in various ways resulting in mul-

tiple low-energy eigenstates of the (N − 1)-particle sys-
tem. The coupling of angular momenta generally pro-
duces eigenstates which are sums of multiple Slater de-
terminants [26]. As a consequence, multiple eigenstates
of the (N − 1)-particle system can make significant con-
tributions to Gjj(ω) if their matrix element in the nu-
merator of Eq. (2) is large. Gjj(ω) then has multiple

poles and we expect to find multiple solutions to Eq. (3)
[9, 10].

If Gjj(ω) has multiple poles, Eq. (4) shows that the self
energy Σjj(ω) must also have poles occurring between the
poles of Gjj(ω). The occurrence of poles in Σjj(ω) near
Eλ is a particular feature of open-shell systems and a
direct consequence of the electronic multiplet structure.
We note that multiple solutions of Dyson’s equation can
also occur in closed-shell systems where the extra solution
results from the coupling of electrons to plasmons[17].

In actual calculations for open-shell systems, a precise
knowledge of the frequency dependence of the self energy
is necessary to locate its poles and obtain accurate mul-
tiplet splittings. In contrast, for closed-shell systems it
is usually sufficient to employ a simple linear expression
for the frequency dependence of the self energy in the
vicinity of the quasiparticle energy [25].
In this work, we employ the GW approximation to

the self energy following the first-principles method of
Hybertsen and Louie [25]. To obtain Σjj(ω) at many
frequencies, we make use of a specific form of the eval-
uation of the frequency dependence of the dielectric re-
sponse and self energy as proposed in Refs. [27] and [18].
In this approach, Σjj(ω) is separated into a frequency-

independent bare exchange part Σ
(x)
jj and a frequency-

dependent correlation part Σ
(c)
jj (ω) given by

Σ
(c)
jj (ω) =

∑

nI

|VjnI |
2

ω − ǫn − ΩIsgn(ǫn − µ)
, (5)

where µ denotes the chemical potential and ΩI is a neu-
tral excitation energy of the N -particle system obtained
by solving Casida’s equation in the random-phase ap-
proximation [27]. Also, VjnI denotes a Coulomb matrix
element between the product ψ∗

jψn and the fluctuation
charge density ρI [27] (see Supplementary Material for
details on the approach).
Equation (5) shows that the poles of Σjj(ω) are deter-

mined by the mean-field electron removal (or addition)
energies ǫn, which are the poles of G0, and by the neu-
tral excitation energies ΩI , which are the poles of the
screened interactionW0 in the random-phase approxima-
tion. Both ǫn and ΩI depend on the mean-field theory
used to compute G0 and W0, implying an analogous de-
pendence on the choice of the mean-field starting point
for the poles of Σjj(ω).
In principle, the self energy should be computed from

the interacting Green’s function G, whose poles are at
Eλ, and the exact screened interaction W [25]. For
closed-shell systems, it is possible to carry out self-
consistent GW0 calculations where the self energy is re-
computed using the iterated Green’s functions such that
Σ becomes independent of the mean-field starting point
[25]. For open-shell systems, self-consistent calculations
are more difficult because of the more complicated struc-
ture of G and additional problems to be discussed below.
To obtain accurate self-energy pole positions we instead
carefully choose mean-field theories that yield ǫn and ΩI

which are good approximations to Eλ and the poles of the
exactW , respectively. In general, one finds that the poles
ofW0 obtained from standard density-functional calcula-
tions are good approximations to neutral excitation ener-
gies. In contrast, the poles of G0 obtained from density-
functional theory often differ from the exact removal or
addition energies (i.e. the quasiparticle energies) by sev-
eral electron volts. Such an error in the poles of G0 leads
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to a similar-sized error in the self energy pole locations
and to a large error in the multiplet splittings. To obtain
the best G0, we construct it from mean-field calculations
using the static COHSEX approximation [16, 25].
In addition, if the result of a calculation depends on

a particular self-energy pole we carry out partially self-
consistent calculations where we only update the partic-
ular ǫn in Eq. (5) which determines the position of the
self-energy pole under consideration.
Molecules.— First, we study the quasiparticle multi-

plet structure of four small molecules for which accurate
experimental data is available.
Nitrogen dioxide (NO2) has a doublet ground state.

We first carry out DFT calculations [28, 29] at the ex-
perimental geometry [30] using the spin-polarized LDA
exchange-correlation functional, norm-conserving pseu-
dopotentials, a plane-wave basis (50 Ry cutoff) and a
cubic supercell with linear dimension of 10.6 Å.
For the construction of W0 we use wave functions and

energies from the DFT calculation. We use 300 empty
states and a 15 Ry momentum space cutoff for the dielec-
tric response. For G0 we use wave functions and energies
from a static COHSEX calculation. Table I shows that
the COHSEX single-particle energies are much closer to
the experimental ionization potentials than the DFT en-
ergies, but the multiplet structure is still missing in this
calculation. For the calculation of the self-energy matrix
element we use 300 empty states and a modified static
remainder correction [31, 32] which extends the sum over
n in Eq. (5) to all empty states and greatly improves con-
vergence. This choice of parameters results in multiplet
splittings converged to within ∼ 0.1 eV.
Figure 1(a) shows the self energy and spectral func-

tion for the removal of a down-spin electron from the 4b2
orbital [see insert in Fig. 1(a)]. We do not expect any
multiplet structure for this process because the up-spin
hole can only couple to the up-spin electron in the 6a1
orbital to give a triplet state. Indeed, the spectral func-
tion exhibits a single peak corresponding to the triplet
(3B2) state.
Figure 1(b) shows results for the removal of an up-

spin electron from the 4b2 orbital. The down-spin hole
can now couple to the up-spin electron in the 6a1 or-
bital to yield either a singlet (1B2) or a triplet (3B2)
state. Indeed, we find two solutions of Eq. (3) result-
ing in two poles of the Green’s function and two peaks
in the spectral function with a singlet-triplet splitting of
1.8 eV which compares favorably with the experimental
splitting of 1.5 eV (Table I). In contrast, the singlet-
triplet splitting from GLDAWLDA is 2.9 eV highlighting
the importance of an accurate mean-field starting point.
To make sure that the two solutions are indeed multiplet
states we traced back the low lying self-energy pole to
open-shell features in G0 and W0: namely, to the pole in
G0 due to the unpaired up-spin 6a1 state and the pole
in W0 due to the 4b2↓ → 6a1↓ transition between the

TABLE I: Comparison of calculated ionization potentials for
NO2 with experiment [30]. Note that the third and fourth
row correspond to the same orbital, but different many-body
states because the up-spin quasiparticle equation exhibits
multiple solutions. The second and third row correspond
to the same many-body state, but different orbitals because
both up-spin and down-spin quasiparticle equations contain
a triplet solution. All energies are given in eV.

orbital LDA COHSEX GLDAWLDA GW exp. state

6a1(↑) -6.6 -12.0 -10.7 -11.2 -11.2 1A1

4b2(↓) -8.7 -14.1 -12.5 -12.8 -13.0 3B2

4b2(↑) -9.3 -14.9 -10.5 -13.6 -13.0 3B2

4b2(↑) -9.3 -14.9 -13.4 -15.4 -14.5 1B2
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FIG. 1: Self energy Σjj(ω) and spectral function Ajj(ω) for
(a) the removal of a down-spin electron from the j = 4b2
orbital in NO2 and (b) the removal of an up-spin electron
from the j = 4b2 orbital. A Lorentzian broadening of 20 meV
is used for each curve.

two open shells. Hund’s rule suggests that the lower en-
ergy solution is the triplet state: an exact diagonalization
analysis in the subspace consisting of the 6a1 and the 4b2
orbitals shows that the singlet is higher in energy than
the triplet solution by 2J with J being the positive ex-
change integral.

Inspection of Table I shows that we obtain two values
for the energy of the triplet state 3B2, one from the re-
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moval of an up-spin electron from the 4b2 orbital, one
from the removal of a down-spin electron from the same
orbital. These values differ by 0.8 eV and bracket the ex-
perimental result. There are two factors which contribute
to this discrepancy: i) remaining errors in the positions of
the self-energy poles which contaminate only solutions of
the up-spin quasiparticle equation and ii) missing vertex
corrections which contaminate solutions of the up- and
down-spin quasiparticle equations in different amounts
[33]. We expect that the inclusion of vertex corrections
will reduce the difference. Nevertheless, as shown above,
accurate multiplet splittings can be extracted from our
calculations if the energy differences are calculated from
solutions of the quasiparticle equation for a particular

spin direction because errors due to missing vertex cor-
rection cancel.
The ratio of the areas under the singlet and the triplet

peaks in Fig. 1(b) should be the experimentally observed
ratio of ensemble-averaged photoemission intensities, the
so-called multiplet ratio [10, 34]. We find in our calcu-
lations that the multiplet ratios are much more sensitive
to the positions of the self-energy poles than the multi-
plet splittings. We do not expect that these ratios can
be computed reliably with our current GW approach be-
cause of the remaining uncertainties in the self-energy
pole locations. However, Schirmer and coworkers found
a relatively simple analytical procedure for calculating
these ratios based on the addition of angular momenta
[34]. We expect that the combination of their approach
for the multiplet ratios and the GW approach for the mul-
tiplet splittings offers a reliable and complete description
of the multiplet structure of open-shell systems.
We also investigated the multiplet structure of the oxy-

gen (O2), nitrogen difluoride (NF2) and the chlorine diox-
ide (ClO2) molecules. The GW multiplet splittings are
2.4 eV for O2, 2.3 eV for NF2 and 2.5 eV for ClO2. They
compare favorably with experimental splittings: 2.3 eV
for O2, 1.8 eV for NF2 and 2.4 eV for ClO2 [35–37]. How-
ever, splittings obtained from GLDAWLDA can deviate
from experimental findings by several electron volts (see
Supplementary Materials).
We also applied our method to a two-site Hubbard

model with three electrons finding good agreement for
multiplet splitting between the exact diagonalization re-
sult and the GW theory over a large range of the inter-
action parameter (see Supplementary Materials).
NV− center.— Next, we apply our approach to the

NV− center in diamond which has a triplet ground state.
This defect currently attracts much attention because of
its extraordinary properties, such as long coherence times
and potential application to quantum computing [3–5].
Figure 2 shows results for the removal of an up-spin

electron from the ν defect level in the band gap of di-
amond (see Supplementary Materials for computational
details). As in the NO2 calculation, the self energy ex-
hibits a low-lying pole leading to two solutions of the
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FIG. 2: Self energy Σjj(ω) and spectral function Ajj(ω) for
the removal of an up-spin electron from the j = ν defect or-
bital of an NV−1 center in diamond. A Lorentzian broadening
of 5 meV is used for each curve.

TABLE II: Comparison of the calculated multiplet splittings
for the NV− defect in diamond with results from exact diag-
onalization calculations on the extended Hubbard model[38].
All energies are given in eV.

splitting GW extended Hubbard model
E(2E) − E(2A2)

2.0 1.8
E(4A2)

−E(2A2)
0.9 0.9

quasiparticle equation. To understand which many-body
states these solutions correspond to, we compare our find-
ings to the results of the exact diagonalization of the
extended Hubbard model of Choi, Jain and Louie[38]
(see Supplementary Materials). These authors fit the
parameters of an extended Hubbard model for the de-
fect levels to ab initio static COHSEX results and show
that this model describes accurately neutral excitations.
The model predicts four many-body states Ψλ for the
ν1e2 configuration. However, only two of the four states,
namely 4A2 and 2A2, are observed in our calculations
because by symmetry only these states have a non-
vanishing matrix element 〈Ψλ|cν↑|ν↑ν↓ex↑ey↑〉 with the
ground state. Table II shows that our GW multiplet
splittings agree well with the results of the exact diago-
nalization of the extended Hubbard model. Note that the
4A2-

2A2 splitting in Fig. 2 corresponds to the last row
in Table II. The first row in Table II shows the splitting
between the 2E state (obtained by removing an up-spin
electron from the e defect orbital) and the 2A2 state.
Again, our findings agree well with the result from the
exact diagonalization of the extended Hubbard model.

Future work is needed to investigate the performance
of the open-shell GWmethod for systems with more com-
plicated multiplet structures, such as systems containing
d- and f-electrons, where additional low-energy solutions
of Casida’s equation can give rise to multiple poles of the
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