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Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving
the electronic structure of disordered systems. We use free probability to approximate the ensemble-
averaged density of states without exact diagonalization. We present an error analysis that quantifies
the accuracy using a generalized moment expansion, allowing us to distinguish between different
approximations. We identify an approximation that is accurate to the eighth moment across all noise
strengths, and contrast this with the perturbation theory and isotropic entanglement theory.

Disordered materials have long been of interest for their
unique physics such as localization [1, 2], anomalous dif-
fusion [3, 4] and ergodicity breaking [5]. Their properties
have been exploited for applications as diverse as quan-
tum dots [6, 7], magnetic nanostructures [8], disordered
metals [9, 10], and bulk heterojunction photovoltaics [11–
13]. However, conventional electronic structure theories
require diagonalization of many explicit sampled Hamil-
tonians, making such calculations expensive. Alternatively,
free probability theory allows a powerful nonperturbative
method for computing of eigenvalues of sums of certain ma-
trices without rediagonalizing the matrix sums [14]. This
has been proposed as an approximation for general random
matrices [15]; however, we are not aware of any rigorous
study of its accuracy. This motivates us to describe herein
a general framework for quantifying the error in terms of
discrepancies in the moments of the probability distribution
functions (PDFs).

Comparing two PDFs.— We propose to quantify the de-
viation between two PDFs using moment expansions. [16]
These are widely used to describe deviations from normality
in the form of Gram–Charlier and Edgeworth series [17, 18].
The general case applies also to non-Gaussian reference
PDFs. For two PDFs w (ξ) and w̃ (ξ) with finite cumu-
lants κ1, κ2, . . . and κ̃1, κ̃2, . . . , and moments µ1, µ2, . . . and
µ̃1, µ̃2, . . . respectively, we can define a formal differential
operator which transforms w̃ into w [17, 19]:

w (ξ) = exp

[
∞

∑
n=1

κn − κ̃n

n!

(
− d

dξ

)n
]

w̃ (ξ) . (1)

This operator is parameterized completely by the cumulants
of both distributions. The resulting Edgeworth series is
asymptotic and only conditionally convergent [20].

The first k for which the cumulants κk and κ̃k differ then
allows us to define a degree to which the approximation
w ≈ w̃ is valid. Expanding the exponential and using the
well-known relationships between cumulants and moments
allows us to state that if the first k− 1 cumulants agree, but

the kth cumulants differ, then

w (ξ) = w̃ (ξ) +
µk − µ̃k

k!
(−1)k w̃(k) (ξ) + O

(
w̃(k+1)

)
. (2)

This series inherits the same asymptotic convergence proper-
ties as the original Edgeworth series [20, 21]. Nevertheless,
it is sufficient to use the leading order correction solely to
quantify the error incurred by approximating one PDF by
another.

The free convolution.— We now take the PDFs to be den-
sities of states (DOSs) of random matrices. The DOS of a
random matrix X is defined using the eigenvalues

{
λ
(m)
n

}
of the M samples X1, . . . , Xm, . . . , XM by

ρ(X) (ξ) = lim
M→∞

1
M

M

∑
m=1

1
N

N

∑
n=1

δ
(

ξ − λ
(m)
n

)
. (3)

To approximate DOSs with free probability, we split the
Hamiltonian

H = A + B (4)

into two matrices A and B whose DOSs, ρ(A) and ρ(B) respec-
tively, can be determined easily. In general, it is not possible
to calculate the eigenvalues of H by adding the eigenvalues
of A and B together; the general problem is complicated by A
and B not commuting [22]. In contrast, free probability tells
us that for certain noncommuting matrices A and B, the exact
DOS becomes the free convolution A � B, i.e. ρ(H) ≈ ρ(A�B),
a “sum” which can be calculated without exact diagonaliza-
tion of H [23]. We calculate the free convolution numerically
by diagonalizing the free approximant [24]

Z = A + Q−1BQ, (5)

where Q is a N × N random matrix of Haar measure. For
real symmetric matrices A and B it is sufficient to consider
orthogonal matrices Q, which can be generated from the
QR decomposition [25] of a Gaussian orthogonal matrix [24].
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(This can be generalized readily to unitary and symplec-
tic matrices for complex and quaternionic Hamiltonians re-
spectively.) The similarity transformation Q−1 ·Q applies a
random rotation to the basis of B with respect to A. In the
N → ∞ limit, the DOS ρ(Z) converges to the free convolution
A�B [14, 26].

The moment expansion above provides an error analysis
via discrepancies between the kth moment of the exact DOS,
µ
(H)
k , and the free approximant, µ

(A�B)
k . By definition, the

exact moments are [27]

µ
(H)
k = µ

(A+B)
k =

〈
(A + B)k

〉
, (6)

where 〈Z〉 = E Tr (Z) /N denotes the normalized expected
trace (NET) of the N × N matrix Z. Expanding the (non-
commutative) binomial produces a sum of joint moments
〈An1 Bm1 · · · Anr Bnr 〉 with the positive integer exponents
ns, ms summing to ∑r

s=1 (ns + ms) = k. The approximation
of freeness implies that the joint moments must obey, by
definition [28], relations of the form

0 = 〈Πr
s=1 (Ans − 〈Ans〉) (Bms − 〈Bms〉)〉 (7a)

= 〈Πr
s=1 Ans Bms〉+ lower order terms, (7b)

where the second equality results from the linearity of the
NET. Testing for µ

(A+B)
k 6= µ

(A�B)
k then reduces to testing

whether each centered joint moment of the form in (7a) is
statistically nonzero. Enumerating all unique joint moments
of degree k is equivalent to the combinatorics of binary neck-
laces, which can be generated efficiently [29].

The procedure we have described ascribes a degree k to the
approximation ρ(H) ≈ ρ(A�B) given the splitting H = A + B.
For each positive integer n, we generate all unique centered
joint moments of degree n, and test if they are statistically
nonzero. The lowest n for which there is at least one such
term is the degree of approximation k. This is our main
result.

Decomposition of the Anderson Hamiltonian.— As a con-
crete example, we focus on the Anderson Hamiltonian [30]

H =


h1 J

J h2
. . .

. . . . . . J
J hN

 , (8)

where J is constant and the diagonal elements hi are identi-
cally and independently distributed (iid) random variables
with PDF ph (ξ). This is a real, symmetric tridiagonal ma-
trix with circulant (periodic) boundary conditions on a one-
dimensional chain. Unless otherwise stated, we assume that
hi are normally distributed with mean 0 and variance σ2. We
note that σ/J gives us a dimensionless order parameter to
quantify the strength of disorder.

So far, we have only required of the decomposition scheme
H = A + B that ρ(A) and ρ(B) be easily computable. Are cer-
tain choices intrinsically superior to others? For the Ander-
son Hamiltonian, we consider two reasonable partitioning

Figure 1: Calculation of the DOS, ρ(ξ), of the Hamiltonian H of
(8) with M = 5000 samples of 2000× 2000 matrices for (a) low, (b)
moderate and (c) high noise (σ/J=0.1, 1 and 10 respectively with
σ = 1). For each figure we show the results of free convolution
defined in Scheme I (ρ(A1�B1); black solid line), Scheme II (ρ(A2�B2);
green dashed line) and exact diagonalization (ρ(H); red dotted line).

schemes:

H = A1 + B1 =


h1

h2
h3

. . .

+


0 J
J 0 J

J 0
. . .

. . . . . .


(9a)

H = A2 + B2 =


h1 J
J 0

h3 J
J 0

. . .

+


0

h2 J
J 0

h4 · · ·
...

. . .

 .

(9b)
We refer to these as Scheme I and II respectively. In
Scheme I, we have ρA1 = ph since A1 is diagonal with
each nonzero matrix element being iid. B1 is simply J mul-
tiplied by the adjacency matrix of a one-dimensional chain,
and therefore has eigenvalues λn = 2J cos (2nπ/N) [31].
The DOS of B1 is ρB1 (ξ) = ∑N

n=1 δ (ξ − λn) which con-
verges as N → ∞ to the arcsine distribution with PDF
pAS (ξ) = 1/

(
π
√

4J2 − ξ2
)

on the interval [−2 |J| , 2 |J|].
In Scheme II, we have that ρA2 = ρB2 = ρX where ρX is

the DOS of X =

(
h1 J
J 0

)
. The matrix X has eigenvalues

ε± (ξ) = h1 (ξ) /2±
√

h2
1 (ξ) /4 + J2 and so

ρX (ξ) =

(
1 +

J2

ξ2

)
ph

(
ξ − J2

ξ

)
. (10)

Numerical free convolution.— We now calculate the free
convolution A � B numerically by sampling the distribu-
tions of A and B and diagonalizing the free approximant
(5). The exact DOS ρ(A+B) and free approximant ρ(A�B) are
plotted in Figure 1(a)–(c) for both schemes for low, moderate
and high noise regimes (σ/J =0.1, 1, 10 respectively). For
Scheme I, we observe excellent agreement between ρ(H) and
ρ(A1�B1) across all values of σ/J, which is evident from vi-
sual inspection; in contrast, Scheme II shows variable quality
of fit. We can understand this difference using the procedure
outlined above to analyze the accuracy of the approxima-
tions ρ(H) ≈ ρ(A1�B1) and ρ(H) ≈ ρ(A2�B2). For Scheme I, the
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Figure 2: Diagrammatic expansion of the term
〈A1B1 A1B1 A1B1 A1B1〉 in terms of allowed paths dictated by
the matrix elements of A1 and B1 of Scheme I in (9a).

+

+

+

approximation (2) is of degree k = 8; the discrepancy lies
solely in the term

〈
(A1B1)

4
〉

[32]. Free probability expects
this term to vanish, but its true value is nonzero. The ma-
trix A1 weights each path by a factor of h, while B1 weights
each path by J and requires a hop to an adjacent site. The
explicit products of matrix elements can then be expressed
diagrammatically with closed paths as shown in Figure 2.
Consequently, we can write explicitly〈
(A1B1)

4
〉
= 〈hi Jhi−1 Jhi Jhi+1 J〉+ 〈hi Jhi+1 Jhi Jhi−1 J〉

+ 〈hi Jhi−1 Jhi Jhi−1 J〉+ 〈hi Jhi+1 Jhi Jhi+1 J〉

=2J4E (hi)
2

E
(

h2
i

)
+ 2J4E

(
h2

i

)2
= 0 + 2J4σ4,

(11)

where the second equality follows from the independence
of the hi’s. This explains why the agreement between the
free and exact PDFs is so good, as the leading order cor-
rection is in the eighth derivative of ρ(A1�B1) with coeffi-
cient 2σ4 J4/8! = (σJ)4 /20160. In contrast, Scheme II is
correct only to degree k = 4, where the discrepancy lies
in
〈

A2
2B2

2
〉
. Free probability expects this to be equal to〈

A2
2B2

2
〉
=
〈

A2
2
〉 〈

B2
2
〉
=
〈

X2〉2
=
(

J2 + σ2/2
)2, whereas

the exact value of this term is J2 (J2 + σ2). Therefore, the
error is in the fourth derivative of ρ(A�B) with coefficient(
−σ4/4

)
/4! = −σ4/96.

Analytic free convolution.— Free probability allows us
also to calculate the limiting distribution of ρ(A�B) in the
macroscopic limit N → ∞ and M → ∞, allowing the
cost of numerical sampling and matrix diagonalization to
be sidestepped entirely. The key tool is the R-transform
r (w) = g−1 (w)− w−1 [23], where g−1 is defined implicitly
via the Cauchy transform (i.e. its retarded Green function)

w = lim
ε↓0

ˆ
R

ρ(A1) (ξ)

g−1 (w)− (ξ + iε)
dξ. (12)

For freely independent A and B, the R-transforms linearize
the free convolution, i.e. R(A�B) (w) = R(A) (w) + R(B) (w),
and the PDF can be recovered from the Plemelj–Sokhotsky

Figure 3: DOS, ρ(ξ), of the Hamiltonian (8) with M = 5000 samples
of 2000× 2000 matrices with (a) low, (b) moderate and (c) high
semicircular on-site noise (σ/J=0.1, 1 and 10 respectively with σ =
1), as calculated with exact diagonalization (red dotted line), free
convolution (black solid line), and perturbation theory with A1 as
reference (blue dashed line) and B1 as reference (gray dash-dotted
line). The partitioning scheme is Scheme I of (9a).

inversion formula by

ρ(A�B) (ξ) =
1
π

Im
((

g(A�B)
)−1

(ξ)

)
(13a)

g(A�B) (w) = R(A�B) (w) + w−1. (13b)

We apply this to Scheme I with each iid hi follow-
ing a Wigner semicircle distribution with PDF pW (ξ) =√

4− ξ2/4π on the interval [−2, 2]. (The analytic calculation
is considerably easier than for Gaussian noise.) First, calcu-
late the Green function G(A1) (z) =

(
z−
√

z2 − 4
)

/2. Next,

take the functional inverse g(A1) (w) =
(

G(A1)
)−1

(w) =

w + 1/w. Subtracting 1/w finally yields the R-transform
r(A) (w) = w. Similarly with ρ(B1) = pAS, we find its
Cauchy transform G(B1) (z) = 1/

√
z2 − 4J2, its functional

inverse g(B1) (w) =
(√

1 + 4J2w2
)

/w, and the R-transform

R(B1) (w) =
(
−1 +

√
1 + 4J2w2

)
/w.

To perform the free convolution analytically, we add
the R-transforms to get R(A1�B1) (w) = R(A1) (w) +

R(B1) (w), from which we obtain g(A1�B1) (w) = w +(√
1 + 4J2w2

)
/w. The final steps are to calculate the func-

tional inverse
(

g(A1�B1)
)−1

and take its imaginary part to

obtain ρ(A1�B1). Unfortunately,
(

g(A1�B1)
)−1

cannot be writ-
ten in a compact closed form; nevertheless, the inversion
can be calculated numerically. We present calculations of the
DOS as a function of noise strength σ/J in Figure 3, showing
again that the free convolution is an excellent approximation
to the exact DOS.

Comparison with other approximations.— We compare the
free approximations to the results of standard second-order
matrix perturbation theory [33], as shown in Figure 3. Un-
surprisingly, perturbation theory produces results that vary
strongly with σ/J, and that the different series, based on
whether A is considered a perturbation of B or vice versa,
have different regimes of applicability. Furthermore, it is
clear even from visual inspection that the second moment of
the DOS calculated using second-order perturbation theory
is not always correct. In contrast, the free convolution pro-
duces results with a more uniform level of accuracy across
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the entire range of σ/J, and that we have at least the first
three moments being correct [34].

It is also natural to ask what mean field theory, another
standard tool, would predict. Interestingly, the limiting be-
havior of Scheme I as N → ∞ is equivalent to both the co-
herent potential approximation (CPA) [35–37] in condensed
matter physics, and the Blue’s function formalism in quan-
tum chromodynamics for calculating one-particle irreducible
self-energies [38]. The breakdown in the CPA in the term〈
(A1B1)

4
〉

is known [1, 39]; however, to our knowledge, the
magnitude of the deviation was not explained. Our error
analysis framework provides such a quantitative explana-
tion.

Finally, we discuss the predictions of isotropic en-
tanglement (IE) theory, which linearly interpolates the
fourth cumulant between the classical convolution
ρ(A∗B) (ξ) =

´ ∞
−∞ ρ(A) (ξ) ρ(B) (x− ξ) dx and the free

convolution ρ(A�B) (ξ) [34, 40]. Given the eigenvalues
ΛA, ΛB of the matrices A and B, the classical convolution
ρ(A∗B) (ξ) can be computed from the eigenvalues of the
random matrix Zcl = ΛA + Π−1ΛBΠ, where Π is a N × N
random permutation matrix. This compares with the free
convolution sampled from Z′ = ΛA + Q−1ΛBQ, which
has the same eigenvalues as the free approximant 5 by
orthogonal invariance of the Haar measure of Q. As
discussed previously, the lowest three moments of Z and
H are identical; this turns out to be true also for Zcl [34].
Therefore, IE proposes to interpolate via the fourth cumulant,
with interpolation parameter p defined as

p =
κ
(H)
4 − κ

(A�B)
4

κ
(A∗B)
4 − κ

(A�B)
4

(14)

For Scheme I, IE always favors the free convolution limit
(p = 0) over the classical limit (p = 1); this follows from
our previous analysis that κ

(H)
4 = κ

(A1�B1)
4 . In Scheme II,

however, we observe the unexpected result that p is always
negative regardless of the noise strength σ/J. From our
previous analysis, κ

(A2+B2)
4 − κ

(A2�B2)
4 = −σ4/4. Addition-

ally, κ
(A2∗B2)
4 6= κ

(A2�B2)
4 where the only discrepancy lies is

in the so-called departing term 〈A2B2 A2B2〉 [34, 40]. This
term contributes 0 to κ

(A�B)
4 but has value

〈
A2

2
〉 〈

B2
2
〉

=(
J2 + σ2/2

)2 in κ
(A2∗B2)
4 , since for the classical convolu-

tion,
〈
Πr

s=1
(

Ans
2 Bms

2
)〉

=
〈

A∑r
s=1 ns

2

〉 〈
B∑r

s=1 ms
2

〉
. Thus p =

−2
(

2
(

σ
J

)−2
+ 1
)−2

which is manifestly negative.

In conclusion, the accuracy of approximations using the
free convolution depend crucially on the way the Hamilto-
nian is partitioned. Scheme I describes an unexpectedly accu-
rate approximation for the DOS of disordered Hamiltonians
for all system sizes N and noise strengths σ/J. Our error
analysis explains why this approximation is correct to degree
8, and also provides a general framework for understand-
ing the performance of other approximations. We expect
our results to be generally applicable to arbitrary Hamilto-
nians, and pave the way toward constructing even more
accurate approximations using free probability with rigor-

ous error bars. Our results represent an optimistic beginning
to the use of powerful and highly accurate nonperturbative
methods for studying the electronic properties of disordered
condensed matter systems regardless of the strength of noise
present. Thus, we expect these methods to be especially
useful for studying the unique physics enabled by noise.
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