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Abstract

Twisted zinc oxide nanowires and nanotubes were recently synthesized by screw-dislocation

growth. We show theoretically that once their diameter increases above a critical size of the order

of a few atomic spacings, the existence of these structures can be rationalized in terms of the

energetics of surfaces and veritable Eshelby’s twist linear elasticity mechanics supplemented by a

nonlinear core term. For Burgers vector larger than the minimum allowed one, a twisted nanotube

with well defined thickness, rather than a nanowire, is the most stable nanostructure. Results are

assistive for designing ultrathin nanostructures made out of non-layered materials.

PACS numbers: 61.46.Np, 61.72.Lk , 31.15.xv
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Recent experimental advances have provided unprecedented level of control in synthesis of

nanowire (NW) and nanotube (NT) of zinc oxide (ZnO) [1, 2] and other materials [3–5] grown

by engaging dislocations, where a seeded axial screw dislocation of a well-defined Burgers

vector provides the self-perpetuating steps for enabling the quasi-one dimensional growth.

ZnO NTs, which possess a regular wurtzite structure, appear to grow into twisted structures

of well-defined sizes, such as NTs with R = 12.6 nm and r = 2.9 nm outer and inner radii,

respectively [1]. This class of anisotropic structures are exciting for many reasons. Twisted

NWs and NTs with finite thickness made out of non-layered materials represent a novel

organization of matter, similar but not identical to multi-walled NTs made out of layered

materials. The way in which a screw dislocation influences the stability and properties of

these nanostructures remains an open and important problem.

The open-core elastic dislocation model of Frank [6] and the elastic Eshelby model pre-

dicting the macroscopic twist underwent by a thin rod [7, 8] containing a screw dislocation,

provide a starting point for understanding the structural transition from screw-dislocated

NWs to NTs. For large Burgers vectors, it is energetically more favorable for dislocation

to become hollow by removing the crystalline material adjacent to the dislocation line and

creating an additional surface in the form of hollow tube. Nonetheless, the detailed stabiliza-

tion mechanism leading to the observed NTs is unknown mainly because the applicability

of the Eshelby model to screw-dislocated nanostructures is not warranted by recent exper-

imentation [4, 9]. In twisted PbSe NWs with R in the 30-50 nm range [4], the estimation

of the Burgers’ vector magnitude using the Eshelby model [7] indicated a large value [9],

attributed by those authors to the presence of a super screw dislocation. In InP NWs with

R = 10 nm, the measured twist rate exceeded by up to 100% the value estimated with

Eshelby model [7] based on the minimal Burgers vector [9]. This result was interpreted as

a significant deviation from the macroscopic behavior.

ZnO is the material of choice for the present investigation because the stability and prop-

erties of pristine ZnO NWs and NTs have been well explored [10–14], particularly through

microscopic simulation. Unfortunately, screw-dislocated nanostructures are not within the

reach of standard microscopic approaches. Therefore, investigating the connection between

thermodynamical stability and Eshelby’s mechanics in these structures calls for a fresh ap-

proach. Indeed, twisted structures with a uniform helical symmetry have a unit cell size

corresponding to the size of the helical motif. Such large number of atoms prohibits calcu-
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lations adopting translational symmetry via periodic boundary conditions (PBC). Instead,

here we employ objective molecular dynamics (MD) [15] coupled [16–18] with a density

functional based tight binding (DFTB) [19, 20]. The valence shell basis set used here com-

prises sp basis functions for O and spd for Zn. In objective MD, we describe the infinitely

long screw-dislocated NWs and NTs as objective structures [21], from basic repetition rules

involving translations and rotations

Xj,ζ = RζXj + ζT. (1)

Index j runs over the N0 atoms at the positions Xj inside the objective domain (a screw-

dislocated PBC domain), while index ζ labels various replicas of the domain. The helical

operation applied to the objective domain is defined by the rotational matrix R of angle θ

and the axial vector T. As N0 is small, adoption of the objective structures concept enables

calculations that would otherwise be beyond reach. Moreover, with the symmetry-adapted

treatment of the electronic states [16], the structural parameters T and θ can take arbitrary

values, permitting us to find the optimal configuration via conjugate gradient relaxations.

Two example calculations are shown in Fig. 1(a) and (b). The two screw-dislocated NTs of

same stoichiometry, R, and Burgers vector magnitude, but different wall thickness exhibit

different intrinsic twist values and very different formation energies (Ef ). The goal of this

Letter is to establish a basis for systematically predicting the energetic stability of twisted

NT and NW over a large range of diameters.

The ZnO wurtzite crystal presents a hexagonal lattice with parameters a = 3.23 Å and c =

5.32 Å, along the basal plane and the vertical axis, respectively. Here we studied ZnO NTs

and NWs with translational periodicity ∼ c (precise value was found by conjugate gradient

energy minimizations) along the [0001] direction and bounded by six {1010} surfaces. We

focused on ultrathin structures since in this size limit any potential deviations from Eshelby

model are maximal. In NWs, the number of layers L in the cross-section was varied from 2

to 6. There are two ways to define R, as Ld100 where d100 =
√
3a/2 is the distance between

(1010) planes, or as (4L− 1)d110/2, where d110 = a/2 is the distance between (1120) planes,

where a is evaluated from the relaxed pristine configurations. We took R as the averaged

values obtained with these two approaches. Then R ranged from 5.5 Å to 17.7 Å. From each

pristine NW we created a collection of NTs by systematically removing inner atomic layers.

These NTs can be uniquely denoted by {L, h}, where h = 1, ..., L−2 is the number of missed
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inner atomic layers. (The particular h = L−1 monolayer case deserves special attention and

therefore it was considered in a separate work [17].) r was defined in an analogous manner

with R and ranged from 2.6 Å to 11.8 Å.

The energetics of the pristine NWs and NTs was analyzed using a standard Wulff de-

composition of the Ef (measured per length) approach. Ef is defined as difference between

the total and bulk energies. The functional form [15] of Ef contains bulk strain energy

correction, that captures the elastic strain stored in the NW or NT walls, surface, and

edge energy terms. By fitting it to our DFTB data, we determined that the last two com-

ponents can be neglected, in agreement with what was previously found in hexagonal Si

NW [16]. Thus, Ef contains only the surface energy term 2πγ(R+ r), with a surface energy

value γ = 64.3meV/Å2. It is worth to note that γ compares well with the DFTB value of

63.2meV/Å2 and the ab-initio value of 72.4meV/Å2 [22] for the (1010) surface of bulk ZnO.

As in experiment [9], we explored screw dislocations with Burgers vectors b of the mini-

mum allowable length c and triple that magnitude, as a model for a super-screw dislocation.

The presence of an axial screw dislocation is denoted by a subscript giving the magnitude

of the Burgers vector, as {L, h}kb, where k = 1 and 3. To rationalize the NW core-surface

interaction, we considered the location of the dislocation core at the NW center as well as at

a distance ξ away. One immediately recognizes that Ef contains two terms: a surface energy

and a strain energy of the dislocation Ed term. Since the dislocations do not change the

surface energy, Ed is obtained by subtracting Ef of the pristine structure from the dislocated

one. The Ed term will be addressed next.

We first discuss dislocated ultrathin NWs. It is reasonable to expect that due to the

close vicinity of surfaces, NWs would eject the dislocation to revert to the pristine structure.

However, there is convincing evidence that they remain stable [3, 4, 9]. We directly probed

the stability of the screw-dislocated NWs and the role of twisting by carrying out two sep-

arate constant energy MD simulations under both PBC and stress-free objective boundary

conditions. A number of 108 atoms located in the primitive cell of a {3, 0}b were evolved in

time for 5.5 ps with a time step of 1 fs. Although the initial temperature (T ) was in both

cases 400 K, the two simulations led to different outcomes. On the one hand, in the PBC

MD solution, the screw dislocation is gradually ejected from the untwisted NW, Fig. 2(a),

until the lowest-energy pristine structure is regained. The dynamics of this process can

be followed in Animation 1 [23] and is reflected in the dramatic increase in instantaneous
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T in Fig. 2(b), that signifies a lowering of the potential energy. On the other hand, the

objective MD solution retains the dislocation axis at the central location of the twisted

by 1.26 deg/Å NW. This dynamical process can be visualized in Animation 2 [23], and is

reflected in the equilibrium T fluctuations of Fig. 2(c).

The contrasting dynamical behavior observed above is further supported by the strain

energy data for a collection of {L, 0}b NWs when the dislocation core is located at various

ξ. In Fig. 2(d) it can be seen that when the twist is neglected (as under PBC), the axis

(ξ = 0) location is unstable. When the intrinsic twist effect is considered by the objective

boundary conditions, the ξ = 0 location becomes stable. Only when it is displaced halfway

to the surface, the dislocation can be ejected. The intrinsic twist dependence on ξ is shown

in Fig. 2(e).

We note that objective MD ability to accurately account for the small intrinsic twist

enables the understanding the stability of these NWs. From a different perspective, our

microscopic findings are in excellent agreement with the elastic theory predictions: a dislo-

cation is stable at the center of a cylinder with stress-free surfaces only when it is allowed

to undergo an Eshelby twist. Ed (per unit length) produced by an axial screw dislocation

in a cylindrical rod (r = 0) of radius R writes as [7]

Ed = Ec +
Gb2

4π

[

ln
R

rc
+ ln (1− ξ2

R2
)− (1− ξ2

R2
)2
]

. (2)

Here Ec and rc represent the non-classical core energy (per unit length) and the core size of

the dislocation while G is the shear modulus. The first two terms in brackets are caused by

the screw dislocation elastic strain field, while the last term captures the energy gained by

acquiring the twist rate

αξ =
b

πR2
(1− ξ2

R2
). (3)

Of course, this continuum treatment cannot be applied within the dislocation core region

characterized by high lattice distortions. Nevertheless, both rc and Ec can be determine

from the objective MD data [17]. We determined rc by comparing the relaxed configuration

and the structure generated by displacing atoms according to continuum strain field of a

dislocation. Defining the dislocation core by the region with the highest (greater than 0.4Å)

relative displacements between these two configurations, we obtained rc = 2a/
√
3 = 3.73 Å,

as also depicted by the hatched areas in Fig. 2(a). By fitting eq. (2) to our data with ζ = 0 we

obtained Ec = 1.29 eV/Å and G = 51 GPa, which is in good agreement with the bulk value
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of 44 GPa [24]. For a comprehensive comparison, we plot in Fig. 2(d) and (e) shifted strain

energy Eξ, where the R-dependence is eliminated by subtracting (Gb2/4π) ln(R/rc) term

from eq. (2), and rescaled twist rate versus the dislocation line position. The surprisingly

good agreement between our atomistic data and continuum predictions brings the fortunate

conclusion that Eshelby’s theory remains valid even with regard to ultrathin screw-dislocated

ZnO NWs.

The way the dislocation affects the electronic states should be interesting to pursue. In

objective calculations, the electronic states are indexed by the helical quantum number κ,

Fig. 3(a), instead of the linear momentum k used under PBC, Fig. 3(b). Most notably,

we find that the core of the screw dislocated NWs couples directly to the electronic states

around the Fermi level. For the case of R = 8.6 Å NW of Fig. 3, the first empty LUMO

band located on the core of the dislocation reduces significantly the direct bandgap from

3.3 eV (pristine NW) to 2.6 eV.

We now discuss dislocated NTs. Using continuum [8], we can quantify with confidence

Ed and the stabilizing twist rate. When r > rc, i.e. when h ≥ 2

Ef = 2πγR(1 +
r

R
) +

Gk2b2

4π

[

ln
R

r
− 1− r2/R2

1 + r2/R2

]

, (4)

and

α =
kb

πR2

1

1 + r2/R2
. (5)

Interestingly, eqs. (4) and (5) were shown to hold even in the one-atom thick NT limit [18].

Fig. 4(a) and (b), showing the formation energy and twist rate for ZnO NTs as a function

of r/R for different R, demonstrate good agreement between the current simulation data

(symbols) and the curves given by the continuum model. Recall that in pristine NTs, Ef

contains only the surface term, in dislocated NTs Ef contains also Ed captured by the

second term in eq. (4). Hence, at constant R, the differences between the dislocated and

pristine curves in Fig. 4(a), are attributed to Ed. For the super screw dislocation, the

interplay between the surface and dislocation strain energies delineates a local minimum.

The closest discrete realization corresponds to a favorable NT with a well defined wall

thickness (see down arrows in Fig. 4(a)). This kind of argument should be relevant to the

observed NTs [1, 2] since the continuum theory is readily applicable at larger sizes. However,

for the NTs with minimal Burgers vector we find no thermodynamic minima with r > rc. As

in pristine NTs, Ef is dominated by the inner surface energy term. Since Ec < 2πrcγ, {L, 0}b
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NWs appear more favorable than {L, h}b NTs. When r < rc, our predictive framework no

longer holds as the continuum leads to divergences, Fig. 4(a). To gain insight into this small

region, we make recourse solely to our DFTB direct calculations which obtained that {L, 0}b
NWs are slightly more stable than corresponding {L, 1}b NTs.

In conclusion, using the method of objective MD, we have simulated ultrathin ZnO NWs

and NTs with a wurtzite structure containing a screw dislocation and showed that the

competition between the lattice strain and surface energy leads to ultrathin chiral NTs

made out of non-layered materials. While accessible in experiment, the characterization of

the Burgers vector and atomic structure distortions associated with lattice twisting presents

many challenges and sources of errors. At variance with recent experimentation [9], we

conclude here that the continuum Eshelby model works very well above a critical size of

only a few atomic spacings. This validation opens up the possibility for understanding the

stability of a class of nanomaterials [1–5] with new properties and diverse applications. Our

result is in good agreement in all important respects with the recent ZnO NT experiments [1,

2]. For example, eq. (4) predicts that the observed twisted ZnO NTs with r = 2.9 nm and

R = 12.6 nm should store a large Burgers vector of 2.4 nm magnitude, a value that compares

well with the reported [1] 1.94 nm.

We thank G. Seifert for providing us the DFTB parameters. Computations were carried

out at the Minnesota Supercomputing Institute.
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FIG. 1: (color online) Atomistic representations of the relaxed configurations (left) and plots of

the formation energy versus the twist angle (right) for (a) {5, 1}3b and (b) {5, 2}3b ZnO NTs. The

Eshelby twist angles of 6.3◦ and 6.0◦, respectively, are indicated by downarrows. The outer radius

is R = 14.7 Å. The purple (gray) plane is the cut made to create the dislocation. Note the intrinsic

twist.

FIG. 2: (color online) (a) Snapshots from PBC MD simulations of a {3, 0}b ZnO NW. The hatched

area depicts the dislocation core region. Instantaneous temperature from MD simulations (b)

under PBC and (c) objective boundary conditions. The graphs of the shifted strain energy Eξ for

twisted and untwisted ZnO NWs (d) and rescaled twist rate (e) versus the dislocation line position.

Microscopic data and continuum predictions are shown with symbols and lines, respectively.

FIG. 3: Comparison for the electronic band structure of (a) {3, 0}b and (b) {3, 0} ZnO NWs.

FIG. 4: (color) (a) Formation energy and (b) intrinsic twist rate for ZnO NTs with different

Burgers vector magnitudes, 0b (pristine structures), 1b, and 3b, versus the ration r/R. NTs with

equal outer radii R are shown in the same color. Lines correspond to eqs. (4) and (5) and symbols

are the microscopic data. Arrows indicate the “magic” twisted NT structures.
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Å

 

 

twisted
untwisted

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

ξ/R

α
ξ
R

2
/
b,

d
eg

/
Å
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