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Abstract

From numerical simulation and analytical modeling it is shown that fast ions can resonate with

plasma waves at fractional values of the particle drift-orbit transit frequency when the plasma

wave amplitude is sufficiently large. The fractional resonances, which are caused by a non-linear

interaction between the particle orbit and the wave, give rise to an increased density of resonances

in phase space which reduces the threshold for stochastic transport. The effects of the fractional

resonances on spatial and energy transport are illustrated for energetic particle geodesic acoustic

mode but they apply equally well to other types of MHD activity.

PACS: 52.20.Dq, 52.25.Fi, 52.35.Fp, 52.35.Mw, 52.65.Cc
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Resonant interactions between waves and particles are ubiquitous in the physical world.

Resonances between waves and drift-orbit transit frequencies of fast particles in magnetized

plasmas play an important role in fast-ion transport and mode excitation. The well known

linear resonance condition in Tokamaks between a wave with frequency ω and the particle

poloidal drift-orbit transit frequency, ωt, is given by: ω = pωt+nωφ with n the toroidal mode

number of the wave, ωφ the toroidal transit frequency, and p the bounce harmonic number

which is an integer in this expression [3–5]. In this letter, however, we show that resonances

between waves and particles can also occur when p is fractional. This increases the number

of available wave-particle resonances significantly, and we explore the effects of fractional

resonances on fast-ion transport. Although fractional resonances in non-linear plasma media

have been noticed previously [1, 2] this letter is the first to show that fractional resonances

can cause particle losses in a magnetic confinement device. The fractional wave-particle

resonances were first found in simulations of particles interacting with an Energetic particle

Geodesic Acoustic Mode (E-GAM) [6], and they can be explained with a theoretical model

presented in this paper. The fractional resonances are not restricted to EGAMs but they

also appear when other MHD activity is present such as Alfvén eigenmodes at realistic mode

amplitudes.

Wave-particle interactions can be studied in detail for the E-GAM because it is a global

toroidally symmetric (n = 0) electrostatic mode with mode frequencies in the range of 10 to

30 kHz. It can be excited to large amplitudes: density fluctuations of ñ/n ≈ 10% have been

found experimentally [7] and can expel large numbers of fast ions. In accordance with [6] we

have modeled the E-GAM as a time-varying electrostatic potential (fig. 1a) which is a flux

function. From this potential the radial electric field in the plasma was obtained (fig. 1d).

The magnitude of the potential in the plasma center, 5 kV, was obtained by comparing

the measured density fluctuations with the ones obtained from displacement induced by the

mode [7].

The full orbit following code SPIRAL [8], which calculates single particle orbits in toroidal

geometry by solving the Lorentz equations, was used to calculate particle trajectories in the
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plasma in the presence of the E-GAM. Periodic excursions of the particle orbit and energy

were found under the influence of a 15 kHz E-GAM with a central electrical potential of

5 kV as shown in Fig. 1 for a 50 keV deuteron launched on a passing orbit. Initially, the

particle gains energy from the mode until its orbit becomes so large that the phase between

the mode changes and the particle loses energy to the mode until it returns to its initial

position and the whole process repeats itself.

In order to determine the resonances between the poloidal transit frequencies of the

particles and a 15 kHz EGAM we have launched a number of deuterons with energies

between 5 and 150 keV with an initial pitch (v‖/v) of 0.5 at a major radius of 2.02 m at

the mid-plane. The selected energy range gives poloidal transit frequencies between 4 and

40 kHz. For each particle the maximum and minimum energy excursion was determined and

plotted against the initial transit frequency for a number of values of the central electrical

potential as shown in Fig. 2.

At lowest mode amplitude (Vcentral = 0.005 kV which is 0.1% of typical EGAM ampli-

tudes) only the linear p = 1, 2, and 3 resonances are visible. When the mode amplitude is

increased to Vcentral = 0.5 kV several fractional resonances appear between the p = 1 and 2

resonances while at 30 kHz the 1/2 resonance appears. The increased mode amplitude also

broadens the resonances. This can be explained by the large excursions that the particle

makes at those mode amplitudes. The time-averaged bounce period over one energy excur-

sion cycle is now resonant with the mode frequency. At a central potential of 1.25 kV the

threshold for resonance overlap between the linear and fractional resonances is passed as can

be inferred from the spikes appearing in the energy traces near the the linear resonances.

Finally, at Vcentral = 5 kV, the experimental value of the central potential, the orbits in the

frequency interval up to the p = 1 has become fully stochastic due to resonance overlap

while at higher frequencies additional new sub-harmonic resonances have appeared.

The fractional resonances found in the simulations can be understood by writing down

the Hamiltonian, H = ε + eδΦ, of a charged particle with charge e, and kinetic energy, ε,

in a time-varying electrical potential: δΦ = Φ0 sin(ωt − krr) with ω the mode frequency

3



and kr its wave number. Resonances correspond to secular behavior and are obtained when

〈dH/dt〉 6= 0 with 〈· · ·〉 = 1
T

∫ T
0 · · · dt and T the fast time scale. The unperturbed particle

position is given by: r = r0 + ρ0 with r0 the drift center and ρ0 the drift orbit radius and

its radial drift velocity ρ̇0 = vdr = vd sin(θ). The angle coordinate, θ, and particle transit

frequency, θ̇ = ωt, are both functions of particle energy, pitch, and drift center. The mode

induces a perturbation to the energy, ε = ε0 + δε, and drift center, rc = r0 + δr, whereby

the effects in energy dominate over the change in drift orbit center. From the change of

energy in time, given by δε̇ = vdr · eδE (δE the electric field associated with the potential

δΦ), which can be cast into:

δε̇ =
krvd0eΦ0

2
sin(θ0 ± (ωt− krr))

whereby the ± sign accounts for the fact that the mode forms beat waves with the particle

transit frequency at the sum and difference frequency. The change of energy over time can

be obtained:

δε =
krvd0eΦ0

2

cos(θ0 ± (ωt− krr))− cos(∓krr)

ωt0 ± ω

from a simple integration over time and by using the leading term of the particle transit

frequency: θ̇0 = ωt0. The next step is to expand the perturbed particle transit frequency as:

θ̇ = ωt0 + (dεωt0)δε+ (drωt0)δr (where dxy ≡ dy/dx). Integrating this expression with time

gives: θ0 = ωt0t for the first term and δθ = dεωt0
∫

δεdt for the second term while the third

term is omitted because δr is small. In a similar manner the change in the drift-orbit radius

is calculated as ρ̇ = vd sin(θ) = (vd0 + (dεvd0)δε + (drvd0)δr) sin(θ0 + δθ) with ρ̇ = ρ̇0 + δρ̇

were ρ̇0 = vd0 sin(θ0) and δρ̇ = ((dεvd0)δε + (drvd0)δr) sin(θ0) + vd0 cos(θ0)δθ. Integrating

over time gives: ρ0 = −vd0 cos(θ0)/ωt0, while δρ is evaluated as:

δρ =
7

∑

i=2

zi cos(αi) (1)

where zi and αi are given in Table I. Wave-particle resonances are now obtained from:

〈dH/dt〉 = ωeΦ0Re
〈

ei(ωt−kr(rc+ρ0+δρ))
〉

6= 0. The terms with ρ0 and δρ contain cosine func-

tions so we can use the Jacobi-Anger identity to express 〈dH/dt〉 as product of Bessel
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functions (with ψ = ωt− kr(rc + ρ0 + δρ)):

eiψ =
∑

j,k,l,m,n,p,q i
j+2(k+l+q)Jj(z1)Jk(z2)Jl(z3)Jm(z4)Jn(z5)Jp(z6)Jq(z7)

ei((k+l−m−n−p+q)krr+((j+l+m+2(p+q))ωt0+(k+l−m+1)ω)t−krrc) (2)

where we have made use of the fact that k + l − m − n − p + q = 0 which must hold for

the spatial part when the time average of this expression is non-zero. In a similar way the

temporal part of Eq. (2) should be zero at the resonance, so we get:

ω

ωt0
= −

j + l +m+ 2(p+ q)

(k + l −m+ 1)
(3)

From this expression we can immediately see that a multitude of fractional resonances

between the mode frequency, ω, and the initial particle transit frequency, ωt0, are obtained

with appropriate choices of the indices j, k, l,m, p, and q. The linear resonance condition is

recovered when the potential, Φ, is vanishing small and therefore k, l,m, p, and q are zero.

It is interesting to note the analogy between the fractional resonances and resonant heat-

ing below the cyclotron frequency as described in [9, 10]. In the cyclotron case the heating,

δWc = v⊥ · eδE⊥, is caused by the product of the perpendicular velocity, v⊥, and perpen-

dicular electric field, δE⊥ while the cyclotron frequency, ωc, is constant. In the fractional

resonances case the heating is given by: δε̇ = vdr · eδE, whereby vdr plays the same role

as v⊥ in the cyclotron case and the electric field, δE, is equivalent to δE⊥. The particle

transit frequency, ωt, plays a similar role as ωc but ωt depends on the drift velocity. Another

difference between the cyclotron and fractional resonances case is, is that the sub-harmonic

resonances appear at frequencies below the fundamental cyclotron resonance while in the

fractional resonance case the sub-harmonic resonances appear above the fundamental reso-

nance (Fig. 2a).

The fractional resonances increase the resonance density in phase space as shown in Fig. 3.

This can lead to increased transport in two ways: i) stochastic transport can occur when

the fractional and linear resonances overlap while ii) resonant transport can occur when the

fractional resonances are well separated.
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Stochastic transport occurs at sufficiently high mode amplitudes as can be seen in Fig. 2d

where a stochastic region is formed below 18 kHz in the region where the linear resonances

were located. The appearance of the fractional resonances between the linear resonances

decrease the threshold for stochastic orbits. Another important observation that can be

made from Fig. 2d it that when the region has become stochastic the particles gain more

energy from the mode than that they lose to the mode which leads to a damping of the

mode. In carefully designed experiments with co and counter beam injection this damping

may be observed experimentally.

Resonant transport was studied in simulations with three populations of 10000 particles

each with their guiding centers at R,Z=(2.02,0.0)m, an energy of 50 keV, and pitches of

0.40, 0.73, and 0.88, respectively, so that the particles are resonant with the fundamental

resonance, the half resonance, and non-resonant respectively, as indicated in Fig. 3 by the

black squares. After the particles were distributed uniformly over the equilibrium drift-

orbit, the EGAM was switched on for 0.27 ms and the spread in guiding centers relative to

the unperturbed drift orbit and the spread in energy was calculated as a function of mode

amplitude (Fig. 4).

From Fig. 4 it can be seen that the particles that were launched at the fundamental

resonance are affected from very low wave amplitudes by spreading them in space and energy.

The particle population at the half resonance is only affected when the mode amplitude

reaches a threshold of 1 kV which is 20% of the amplitude seen in experiments. The non-

resonant population is hardly affected by the mode. These results show clearly that the

inclusion of the fractional resonances enhance the fast-ion transport and a larger part of

phase space is affected by the mode than only the regions around the linear resonances.

Preliminary evidence of fast-ion transport at fractional harmonics of the mode frequency

is observed during strong EGAM activity in the DIII-D tokamak where the EGAM was

strongly excited during the current ramp-up phase with equal amounts (2.2 MW) of co-

and counter-current neutral beam injection (NBI) similar to the experiments reported in [7]

whereby the EGAM is strongly driven by the counter NBI (particle energy: 81 keV) while

6



the co-beam (particle energy: 76 keV) is injected in a region of phase space where the

p = 1/2 resonance is residing (fig. 3). In Fig. 5 the spectrum of EGAM oscillations as

measured with a Mirnov coil is compared with the spectrum of losses to a fast-ion detector

(FILD) [11]. A peak in the loss spectrum occurs at the half harmonic that does not appear

in the instabilities spectrum which is consistent with the theoretical prediction that ρ̇ should

contain fractional harmonic oscillations at large mode amplitude.

From numerical simulation and analytical modeling it was found that fast ions can res-

onate with plasma waves at fractional values of the particle drift-orbit transit frequency

when the plasma wave amplitude is sufficiently large. The fractional resonances, which are

caused by a non-linear interaction between the particle orbit and the wave, give rise to an

increased density of resonances in phase space which reduces the threshold for stochastic

fast-ion transport.

This work was supported by the US Department of Energy under DE-AC02-09CH11466,

SC-G903402, and DE-FC02-04-ER54698.

7



REFERENCES

[1] G.J. Lewak and C.S. Chen, J. Plasma Physics 3 481 (1969)

[2] P.J. Peverly et al., Laser Physics 10 303 (2000)

[3] S.D. Pinches et al., Nucl. Fusion 46 S904 (2006)

[4] W.W. Heidbrink, Phys. Plasmas 15 055501 (2008)
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TABLE I: The coefficients used in Eq. (1) and Eq. (2).

i zi αi index

1 − vd0
ωt0

ωt0t j

2
(

krvd0eΦ
4

) (

v′dε −
vd0ω

′

tε

ωt0

)(

4ω2−28ω2

t0

(4ω2

t0
−ω2)(ω2

t0
−ω2)

)

krr k

3, 4
(

krvd0eΦ
4

) (

v′dε −
vd0ω

′

tε

ωt0

)(

2
(ω2

t0
−ω2)

)

ωt0t± krr l,m

5
(

krvd0eΦ
4

)(

2v′
dε

ω2

t0
−ω2

−
4ωt0vd0ω

′

tε

(ω2

t0
−ω2)2

)

ωt− krr n

6, 7
(

krvd0eΦ
4

) (

v′
dε

(2ωt0±ω)(ωt0±ω)
+

vd0ω
′

tε

(2ωt0±ω)(ωt0±ω)2

)

(2ωt0 ± ω)t∓ krr p, q
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FIGURE CAPTIONS

FIG. 1: (Color On-line ONLY) (a) EGAM potential. (b) Energy excursion of a 50 keV deuteron

launched at R=2.02 m, Z=0.0 m, and pitch of 0.5 as function of time in the presence of a 15 kHz

EGAM. The particle orbit during one energy cycle (0.33 ms) without (b) and with (c) the EGAM

present. Orange line: full orbit; blue line: guiding center.

FIG. 2: Minimum and maximum particle energy excursion as function of the initial transit fre-

quency for various values of the electrical potential of the EGAM. (a) At 0.05 kV only the linear

resonances are present. (b) At 0.5 kV fractional resonances appear. (c) At 1.25 keV the threshold

for mode overlap between linear and fractional resonances is passed while (d) at 5 keV the region up

to the fundamental resonance has become stochastic and sub-harmonic resonances are developing

strongly. Integer and a number of fractional resonances are indicated.

FIG. 3: (Color On-line ONLY) Energy-pitch phase space with linear [solid (green) line] and a small

number of fractional resonances [dashed (red) line] shown. The locations of the three ensembles

that were used to investigate the effects of the fundamental, half, and non resonances on particle

transport are indicated with the black squares.

FIG. 4: Standard deviation of the radial (a) and energy (b) excursion of an ensemble of ions

as a function of EGAM mode amplitude for the fundamental resonance, the half resonance and

non-resonant particles.

FIG. 5: (Color On-line ONLY) Magnetic [dashed (black) line] and FILD [solid (red) line] spectrum.

Losses at half the EGAM frequency are only observed with FILD.
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