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We report a measurement of the electron temperature in a plasma generated by a high-intensity
laser focused into a jet of neon. The 15 eV electron temperature is determined using an analytic
solution of the plasma equations assuming local thermodynamic equilibrium, initially developed for
ultracold neutral plasmas. We show that this analysis method accurately reproduces more sophis-
ticated plasma simulations in our temperature and density range. While our plasma temperatures
are far outside the typical “ultracold” regime, the ion temperature is determined by the plasma
density through disorder-induced heating just as in ultracold neutral plasma experiments. Based
on our results we outline a pathway for achieving a strongly coupled neutral laser-produced plasma
that even more closely resembles ultracold neutral plasma conditions.
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Laser-produced plasmas (LPPs) span a wide range of temperatures and densities [1]. At one extreme, lasers are
used to achieve fusion conditions [2] with plasma densities near n = 1023 cm−3. Today’s highest intensity lasers can
be used to generate electrons with kinetic energies up to kBTe = 400 MeV using laser wakefield acceleration [3]. On
the other extreme of temperature and density, recent ultracold neutral plasma (UNP) experiments [4–10] generate
plasmas with densities near n ∼ 109 cm−3 and electron temperatures as low as Te = 1 K.
Determining the electron temperature Te in LPPs can be difficult [11]. For modest laser intensities I = 1014 − 1016

W/cm2 and relatively low densities n = 1015 − 1020 cm−3, ionization of the neutral atoms occurs primarily in
the strong-field (multi-photon ionization) regime [12]. When these cool (kBTe ∼ 10 eV) low-density plasmas are
generated using femtosecond duration laser pulses, they are in a non-equilibrium state. Thermalization, expansion,
recombination, and other processes occur on time scales that are long compared to the laser pulse. The electron
temperature is often determined by simulating the plasma evolution using the electron and ion fluid equations [13]
and comparing with the measured time-dependent density.
Determining the electron temperature is comparatively simple in UNPs [14]. The UNPs are generated by resonantly

ionizing laser-cooled gases or gases in supersonic expansions near threshold [4–6, 8, 9]. The ∼1 mK atomic temperature
before ionization make it possible to use narrowband laser excitation to promote the bound electron to low energy
continuum states with high efficiency. As long as electron-ion recombination and electron-Rydberg atom scattering
can be neglected[14], the electron energy is equal to the difference between the energy of the single photon used to
ionize the atoms and the atomic ionization potential. Similarly to the cool low density LPPs, these plasmas are formed
in a non-equilibrium state and the relaxation processes occur on time scales that are long compared to the plasma
formation time. In this letter we will show that the analysis originally developed for UNPs can be accurately applied
to a certain class of low-density, low-temperature LPPs to determine the electron temperature. Strongly-coupled
neutral plasmas can be created in these LPPs under the right conditions.
If the electron temperature is not known apriori, the rate at which the plasma expands can be used to determine

the electron temperature [14–18]. For UNPs, the expansion rate is derived analytically. The time-dependent spatial
density profile in these spherically symmetric plasmas is

n(r, t) = n0

(

σ0

σ(t)

)3

exp

[

−
r2

2σ2(t)

]

, (1)

where σ(t) =
(

σ2
0 + v2expt

2
)1/2

and the expansion velocity is vexp =
√

kBTe/mi. Measuring the time-dependent density
and fitting it to the form

n(t) =
n(0)

[

1 + (vexpt/σ0)
2
]3/2

, (2)

gives the electron temperature [14].
This simple UNP expansion theory can be applied to cool low-density LPPs as well, provided a few conditions can

be met. First, the UNP theory is valid when the electron temperature is well-defined, meaning that the electrons have
a Maxwellian velocity distribution and have a Boltzmann spatial distribution, ne ∝ exp [eΦ/kBTe]. Second, the ions
are also assumed to have a Maxwellian velocity distribution and to be well-described by fluid equations. This requires
the number of particles per Debye sphere to be large (nλ3

D ≫ 1, where the Debye length is λD =
√

kBTeǫ0/ne
2),

and for collisions between particles to be rapid compared to the plasma expansion. For a cool low-density LPP with
n = 1018 cm−3 and kBTe = 10 eV, we find nλ3

D = 13. The electron collision rates are 1011 − 1012 s−1. The ion
collision rate is 109 s−1 and the ion plasma frequency is 3 × 1011 s−1. These rates are high compared the expansion
time of a few ns [18].
Third, the electron-ion recombination and electron-Rydberg atom scattering is assumed to be negligible [19]. For

a cool low-density LPP with n = 1018 cm−3 and kBTe = 10 eV, the radiative recombination rate is 9× 105 s−1 and
the three-body recombination rate is 3× 105 s−1 [20]. Both are completely negligible on the ns time scale.
The final condition for the validity of the UNP expansion model is that the spatial density distribution should

be Gaussian, as in Eq. (1). This condition is not strictly met for LPPs, where cylindrical symmetry is used. In
the transverse (radial) direction, the initial spatial distribution is more flat-topped than Gaussian [18], although the
deviations from Gaussian do not appear to be large. With appropriate changes for dimensionality, and with the caveat
that the density in Eq. (2) refers to the rms density of the plasma, we will show that the UNP expansion model
matches the density data and provides a reasonable estimate of the electron temperature.
As an example, we apply Eq. (2) to data published recently by Kanter, et al. [18], that studied the expansion of

a cool low-density LPP. In that experiment, a ti:sapphire ultrashort laser pulse propagating in the z direction was
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FIG. 1. (color) A comparison of the data and models Ref. [18] with the UNP expansion model. The blue squares and red
circles are measured data when the fs laser is linearly and circularly polarized, respectively. The dark lines running from 1 to
20 ns are the simulation from Ref. [18]. The thin lines running from 1 to 50 ns are the UNP model predictions from Eq. (3).

focused asymmetrically to a FWHM in the xy plane of 92 × 46 µm2. Their target was a Kr jet at a density of 1014

cm−3. At early times the expansion occurs primarily in the xy plane. Assuming that the plasma has the same relative
size as the laser focus, Eq. (2) should be modified for Kanter’s experimental parameters to be [21, 22]

nK(t) ≈
n0

√

1 + (vexpt/σx)
2

√

1 + (vexpt/σy)
2

(3)

where σx = 16 µm and σy = 32 µm are the initial rms sizes of the plasma in the x- and y-directions [23].
A plot of Kanter’s plasma density as a function of time is shown in Fig. 1 for two different laser polarizations.

Also plotted is Kanter’s simulation (thick black lines from 0 to 20 ns) along with the UNP expansion model of Eq.
(3) (thin black lines from 0 to 50 ns). The good agreement between these models indicates that the UNP expansion
model can be used to extract meaningful electron temperatures in LPPs.

Applying the UNP expansion model to cool low-density LPPs requires a measurement of the the time-evolving
plasma density. The beautiful x-ray technique in Ref. [18] is typically not available in most laser laboratories, and
interferometry is often used instead. In our lab we also use interferometry to measure the plasma density, as described
below.
We generate our plasmas by focusing 4 mJ, 35 fs-duration, ti:sapphire laser pulse effusive pulsed Ne jet. The atom

density in the jet ranges up to n = 1.5× 1018 cm−3. The jet is formed using a solenoid valve with a 30 µm diameter
and 2 mm length tube serving as the nozzle. The pressure behind the solenoid ranges up to 1000 Torr. The Ne atoms
are ionized when the laser intensity is greater than 8.7× 1014 W/cm2. We avoid generating higher charge states by
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FIG. 2. A schematic diagram of the laser system. The plasma is created by focusing a high power laser beam into a Ne gas
jet. Two weak laser beams from a slightly misaligned Michelson interferometer probe the plasma as described in the text.
BS1, BS2, BS3 = beam splitters. L1, L2 = lenses. CCD1, CCD2 = CCD cameras. BW = window at Brewster’s angle. λ/2
= half-wave plate. CCD1 is used to verify the focal spot alignment as the delay line moves. CCD2 is used to measure the
interference fringes in the two weak laser beams.

limiting the peak laser intensity in the gas jet to 2.5× 1015 W/cm2.
The plasma density is measured by determining the phase shift of a probe laser beam as it passes through the

plasma. A schematic diagram of the laser system is shown in Fig. 2. The main laser beam is divided into two beams
using a 95:5 beamsplitter. The more powerful beam is focused into the gas jet using a 50 cm focal length lens. The
weaker beam traverses a variable-length delay line and is split again into two beams in a Michelson interferometer.
The two arms of the interferometer are set to zero path-length difference. One of the mirrors is tilted by 0.1◦, causing
two laser beams to emerge, called the probe and reference beams. They are combined with the strong beam at the
focusing lens. All three laser beams are focused by the same lens into the Ne gas jet. The weak probe is aligned to
pass through the center of the plasma created by the strong beam. The weak reference beam focuses about 1 mm to
the side of the plasma. All three laser beams exit the vacuum chamber through a window. A glass plate at Brewster’s
angle reflects the probe and reference laser beams while passing the strong beam into a beam dump. The probe and
reference laser beams overlap in the far field and form an interference pattern on CCD2 (see Fig. 2), analogous to
a Young’s double-slit interference pattern. The fringes in the interference pattern shift depending on the phase shift
accrued by the probe laser beam as it passes through the plasma. Typical fringe data is shown in Fig. 3.
The index of refraction, ñ, of a plasma of free electrons is given by ñ = [1− (ωp/ωL)

2]1/2, where ωp =
√

ne2/meǫ0
is the electron plasma frequency and ωL is the laser frequency. As the index of refraction changes, the fringes in the
interference pattern shift because of changes in the relative phase of the probe and reference laser beams,

∆φ =
2πL

λ
(1− n) ≈ nL

e2

2mǫ0ωLc
. (4)

The fringe shift, measured in pixel number on CCD2, is converted to phase by equating the period of the interference
pattern to a phase shift of 2π. Then Eq. (4) is used to determine the density of the plasma. By changing the delay of
the two weak beams relative to the strong laser beam, we measure the plasma density as a function of time. Typical
results are shown in Fig. 4.
The left panel of Fig. 4 shows the measured fringe shift in pixels as a function of the distance of the delay arm for
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FIG. 3. Interference fringes as measured using camera CCD2. Top panel: fringes when the plasma is present. Middle panel:
fringes when the plasma is absent. Bottom panel: the vertical sum of the fringe shift image data with the background subtracted.
The time delay is 100 ps and the plasma density is n = 1.3× 1018 cm−3. Each image is an average of 10 laser pulses.

three different plasma conditions. From this data we can extract the electron temperature, as shown in the right-hand
panel of Fig. 4. The relative plasma density is plotted as a function of time. All three densities show the same overall
behavior. Using the expression for a symmetric two-dimension symmetric expansion,

n(t) =
n(0)

1 + (vexpt/σ0)
2

(5)

we fit our data to extract σ0/vexp = 4.8 ns. We measure the Gaussian width of the ionizing laser beam focus to be
w = 70 µm. The peak intensity in the laser pulse is calculated to be 2.5 × 1015 W/cm2. The radius at which the
laser beam falls below the critical intensity of 8.7× 1014 W/cm2 required to ionize neon is 0.73w. A flat distribution
of radius 0.73w has an rms size of σ = 0.42w = 29 µm. Therefore the plasma expansion velocity is 6000 m/s, giving
an electron energy of kBTe = miv

2
exp = 15 eV.

We can estimate the expected electron energy using a model based on strong-field ionization. After the electron is
detached, the Coulomb field from the parent ion is negligible compared to the laser field. An electron with charge e
accelerates in the laser field E = E0 cos(ωt+ φ). For an electron initially at rest, the velocity of the electron at some
later time t will be

ẋ =
eE0

ωm
[sin(ωt+ φ)− sinφ] (6)

The average drift kinetic energy of the electron after the laser pulse is finished will be the time-averaged quantity
〈Kdrift〉 = 2Up

〈

sin2 φ
〉

φ
, where Up = e2E2

0/4ω
2m is the ponderomotive energy. The average occurs over phase angles

φ in which the electron can escape from the atom. For example there can be some detachment phases such that the
quivering electron drifts towards the parent ion and other times such that it drifts away. A reasonable choice of phase
range is φ = ±π/6, giving

〈Kdrift〉 = 0.17Up. (7)



6

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

stage location (m)

fr
ac

tio
na

l f
ri

ng
e 

sh
if

t

 

 

1000 Torr
500 Torr
250 Torr

0 2 4

0

0.2

0.4

0.6

0.8

1

1.2

time (ns)
no

rm
al

iz
ed

 d
en

si
ty

 

 

1000 Torr
500 Torr
250 Torr

FIG. 4. Fringe shift and plasma density as a function of time after plasma creation for three different pressures behind the
jet. The maximum fringe shift corresponds to a plasma density of 1.3× 1018 cm−3 and is directly proportional to the pressure
behind the jet. The right panel shows the scaled density as a function of time. The data from all three initial densities follows
the same curve, indicating that there is no significant recombination at these time scales. The UNP expansion model of Eq.
(5) is plotted as the dashed line for kBTe = 15 eV.

In our experiment, with a peak intensity of 2.5 × 1015 W/cm2, the ponderomotive energy is 150 eV, suggesting an
electron energy of 25 eV, in rough agreement with our measurement (15 eV).
A strong connection between our LPP and UNPs can be drawn in consideration of the ion temperature. Initially

the neutral atom temperature in our effusive jet is near room temperature, about 300 K. When the plasma is formed,
the inter-particle potential energy landscape impulsively hardens[24]. The 35 fs laser pulse is short compared to
the ion plasma frequency, ωi

p = (2.8 ps)−1 at a density of 1.5 × 1018 cm−3. The ions will move to minimize their
potential energy due to interactions with neighboring ions. On the time scale of the ion plasma frequency, they will
reach the correlation temperature Tc = (2/3)(e2/4πǫ0awskB) = 3000 K where aws = (3/4πn)1/3 is the Wigner-Seitz
radius. Although the neutral atoms are initially at room temperature, their equilibrium temperature is much higher
and determined by the plasma density. This same phenomenon, called disorder-induced heating [8, 24–27], has been
studied extensively in ultracold neutral plasmas. Because the density determines the ion temperature, UNP physics
can be studied in LPPs at room temperature.
Research with UNPs suggests that three-body recombination becomes important when the electron Coulomb cou-

pling parameter is Γ = Z2e2/4πǫ0awskBTe > 0.1 [15, 28], where Z is the ionization state. For a plasma with an
electron temperature of 15 eV, this happens at a density of 3× 1020 cm−3, or about 10 times ambient density. How-

ever, the three-body recombination rate depends on temperature as T
−9/2
e , meaning that lower temperatures lead to

significantly greater recombination. Xenon, for example, can be ionized at 10 times lower laser intensity than what is
required for neon. The model of Eq. (7) suggests that in a xenon LPP with our density of n = 1.5× 1018 cm−3 and
ten times lower laser intensity the the recombination rate (≈ (50 ps)−1) would have a noticeable effect on the density
evolution on the sub-ns time scale.
In conclusion, we have shown that UNPs and a certain class of cool low-density LPPs are similar. They are both

quasi-neutral plasmas in which the plasma expansion is driven by the electron pressure. They both are treated
successfully using an analytic solution of the plasma equations that assumes local thermodynamic equilibrium. The
analytic solutions originally developed for UNPs can be used to predict the LPP electron temperature. At the densities
achieved in our experiment, the ions are strongly coupled because the ion temperature at early times is determined by
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the density. Calculations suggest that under some readily attainable experimental conditions the electrons can also
be strongly coupled.
Future studies could explore the influence of the laser intensity on the electron temperature as suggested by Eq. (7).

Plasmas with strong coupling in both the electrons and ions are of great fundamental interest. It should be possible
to generate plasmas with even higher values of Γ using LPPs generated by a sequence of laser pulses, as suggested by
Murillo [29]. Because Γ is proportional to Z2, a carefully designed laser pulse sequence for Z = 5, for example, could
potentially increase Γ to values greater than 20 in a neutral non-degenerate system.
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