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We show that complex PT -symmetric photonic lattices can lead to a new class of self-imaging
Talbot effects. For this to occur, we find that the input field pattern, has to respect specific
periodicities which are dictated by the symmetries of the system. While at the spontaneous PT -
symmetry breaking point, the image revivals occur at Talbot lengths governed by the characteristics
of the passive lattice, at the exact phase it depends on the gain and loss parameter thus allowing
one to control the imaging process.
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Introduction–The Talbot effect [1, 2], a near field
diffraction phenomenon in which self-imaging of a pe-
riodic structure illuminated by a quasi-monochromatic
coherent light periodically replicates at certain imaging
planes, is an important phenomenon in optics. These
imaging planes are located at even integer multiples of
the so-called Talbot distance zT = 2a2/λ, where a rep-
resents the spatial period of the pattern and λ the light
wavelength. The simplicity and beauty of Talbot self-
imaging have attracted the interest of many researchers.
Such effects find nowadays applications in fields ranging
from imaging processing and synthesis, photolithography
[3], and optical testing and metrology [4] to spectrome-
try and optical computing [5] as well as in electron optics
and microscopy [6]. Similar processes are encountered
in other areas of physics involving nonclassical light [7],
atom optics [3, 8], Bose-Einstein condensates [9], coupled
lasers [10] and waveguide arrays [11]. However all these
achievements are limited in studying the properties of
the input beams and using real gratings for imaging. By-
passing these limitations will not only enrich the conven-
tional self-imaging research, but also offer new methods
for imaging technologies. It is therefore extremely desir-
able to investigate and propose self-imaging architectures
which incorporate gain or/and loss mechanisms.

In the present paper we study the Talbot revivals in a
new setting, namely, a class of active lattices with anti-
linear symmetries. These structures deliberately exploits
notions of (generalized) parity (P) and time (T ) symme-
try [12, 13] in order to achieve new classes of synthetic
meta-materials that can give rise to altogether new phys-
ical behavior and novel functionality [14–16]. Some of
these results have been already confirmed and demon-
strated in a series of recent experimental papers [15–17].
In classical optics, PT -symmetries can be naturally in-
corporated [14] via a judicious design that involves the
combination of delicately balanced amplification and ab-
sorption regions together with the modulation of the in-
dex of refraction. In optics, PT −symmetry demands
that the complex refractive index obeys the condition
n(r) = n∗(−r). It can be shown that these structures
have a real propagation constant (eigenenergies of the

paraxial effective Hamiltonian) for some range (the so-
called exact phase) of the gain and loss coefficient. For
larger values of this coefficient the system undergoes a
spontaneous symmetry breaking, corresponding to a tran-
sition from real to complex spectra (the so-called broken
phase). The phase transition point, shows all the char-
acteristics of an exceptional point (EP) singularity. PT -
synthetic matter can exhibit several intriguing features
[14–31]. These include among others, power oscillations
and non-reciprocity of light propagation [14, 15, 19], non-
reciprocal Bloch oscillations [20], unidirectional invisibil-
ity [28] and a new class of conical diffraction [31]. In
the nonlinear domain, such non -reciprocal effects can
be used to realize a new generation of optical on-chip
isolators and circulators [22]. Other results include the
realization of coherent perfect laser-absorber [23, 29] and
nonlinear switching structures [24].

Here, we define conditions which guarantee the exis-
tence of Talbot self-imaging for a class of active PT -
symmetric lattices. We find that the non-orthogonality of
the Floquet-Bloch modes imposed by the non-Hermitian
nature of the dynamics together with the discreteness of
the lattice structures imposes strong constraints for the
appearance of Talbot recurrences. We show that while at
the spontaneous PT -symmetric point the Talbot length
zT is characterized by the structural characteristics of
the lattice, in the exact PT -symmetric phase it is con-
trolled by the gain and loss parameter γ. This allow us
to have reconfigurable Talbot lengths for the same ini-
tial pattern. Finally, we discuss possible experimental
realizations where our predictions can be observed.
Model– We consider a one-dimensional (1D) array of

coupled optical waveguides. Each of the waveguides can
support only one mode, while light is transferred from
waveguide to waveguide through optical tunneling. The
array consist of two types of waveguides: type (A) involv-
ing a gain material whereas type (B) exhibits an equal
amount of loss. Their arrangement in space is such that
they form N coupled (A-B) dimers with intra and inter-
dimer couplings k and c respectively, such that both cou-
plings are of similar (but not the same) size i.e. k ∼ c (see
for example Fig. 2 where k = 1.05c). In the tight binding
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FIG. 1: (Color online) (a) Photonic lattice structure with
intra-dimer coupling k and inter-dimer coupling c. Sublattice
(gain waveguide) A is shown by the red rectangular cuboid
while sublattice (lossy waveguide) B is shown by green rect-
angular cuboid. Each dimer is distinguished by the index n.
(b) Dispersion relations for various γ-values. At γ = γPT the
gap between the two bands dissappear and an exceptional
point singularity is created.

description [32], the diffraction dynamics of the electric
field amplitude Ψn = (an, bn)T at the n-th dimer evolves
according to the following Schrödinger-like equation

idan(z)dz = εan(z) + kbn(z) + cbn−1(z)

idbn(z)dz = ε∗bn(z) + kan(z) + can+1(z)
(1)

where ε = ε0 + iγ is related to the complex refractive
index [14]. Without any loss of generality, we will as-
sume below that ε0 = 0, γ > 0 and c < k [19]. The ef-
fective Hamiltonian that describes the system commutes
with an anti-linear operator (in [19] we coined this PdT -
symmetry) which is related with the local PT -symmetry
of each individual dimer.

At this point it is beneficial to adopt a momentum rep-
resentation an(z) = 1

2π

∫ π
−π dqãq(z) exp(inq) (and simi-

larly for bn) where the integral is taken over the Brillouin
zone −π ≤ q ≤ π. Because of the translational invariance
of the system (1), the equations of motion in the Fourier
representation break up into 2 × 2 blocks, one for each
value of momentum q:

i
d

dz

(
ãq(z)

b̃q(z)

)
= Hq

(
ãq(z)

b̃q(z)

)
; Hq =

(
ε vq
v∗q ε∗

)
(2)

with vq = k + c · e−iq. The two component wave func-
tions for different q-values are decoupled thus allowing
for a simple theoretical description of the system. This
allows us to perform the evolution in Fourier space and
then evaluate the spatial representation by a backward
transformation i.e.

Ψn(z) =
1

2π

∫ π

−π
ψq(z)e

inqdq. (3)

where Ψn(z) ≡ (an(z), bn(z))T is the field amplitude for
the n-th dimer in the spatial representation and ψq(z) ≡
(ãq(z), b̃q(z))

T is the corresponding Fourier component.

Dynamics – Substituting in Eq. (2) the stationary
form (an, bn)T = exp(−iEz)(A,B)T , and requesting non-
trivial solutions of the resulting stationary problem, i.e.,
(A,B) 6= 0, we obtain the band structure of this diatomic
PT system [19]:

E± = ±
√

(k − c)2 + 4kc cos2(q/2)− γ2. (4)

For γ = 0 we have two bands of width 2c, centered at
E = ±k. In this case, the two bands are separated by
a gap δ = 2(k − c) and the exact PT phase extends
over a large γ regime. It follows from Eq. (4) that
when γ ≥ γPT = δ/2, the gap disappears and the two
(real) levels at the ”inner” band-edges of the two differ-
ent bands (corresponding to q = ±π) become degener-
ate. The corresponding eigenvectors are also degenerate,
resulting in an exceptional point (EP) singularity. For
γ > γPT the spectrum becomes partially complex [19].
Below we focus our analysis on the domain γ ≤ γPT .

The eigenvectors associated with the Hamiltonian Eq.
(2) are bi-orthogonal, and therefore do not respect the
standard (Euclidian) orthonormalization condition. As a
result the conservation of total field intensity is violated

for any γ 6= 0. Denoting by |R±(q)〉 = 1√
2
(1, E±(q)−iγvq

)T

the right eigenvectors corresponding to the eigenvalue
E±(q), we have that the q−th momentum components
of any initial excitation can be written as ψq(0) =∑
l=± cl|Rl(q)〉. The evolved q-field component is

ψq(z) =
∑
l=±

cql e
−iEl(q)z|Rl(q)〉 (5)

where cql = 〈Ll(q)|ψq(0)〉 is the expansion coefficient and
〈Ll(q)| is the left eigenvector associated with eigenvalue
El(q). The above expansion valid as long as the Hamilto-
nian Hq in Eq. (2) does not have a defective eigenvalue.
The latter appears at the spontaneous PT -symmetric
point γPT = k − c (EP) for q = ±π. The corresponding
evolved q-field component is then written as:

ψq=±π(z) = (c1 + c2z)(1,−i)T + c2(−i/γ, 0)T (6)

Direct substitution of Eqs. (5,6) into Eq. (3) provides
the evolution of the field in this system. A note of cau-
tion is here in order. For the existence of Talbot revivals,
a necessary condition is that the initial preparation must
not excite the q = ±π defective mode. In the opposite
case, the field increases linearly with the propagation dis-
tance z (see Eq. (6)), thus destroying the possibility of
revivals of any initial pattern.
Talbot self-imaging – We are now ready to analyze the

Talbot self-imaging recurrences in the case of the PT -
symmetric structure of Fig. 1. We recall that in order the
Talbot effect to occur, the input field distribution should
be periodic [11], and thus in general Ψn(0) = Ψn+N (0)
where N represents the spatial period of the input field.
Because of this periodic boundary condition, q can take
values only from the discrete set

qm =
2mπ

N
, m = 0, 1, 2, ..., N − 1. (7)
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FIG. 2: (Color online) Talbot intensity ”carpets” for period-
N input patterns. Length is measured in units of inter-dimer
coupling c = 1. The intra dimer coupling is k = 1.05.
(a) periodicity N = 1 with the binary input {1, 0, 1, 0, ...}
and γ = 0.05. (b) periodicity N = 3 with the binary input
{1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, ...} and γ = γPT = 0.05.

Substituting the above constrain in Eq. (3) we get the fol-
lowing expression for the evolved field at the n-th dimer

Ψ(N)
n (z) =

N−1∑
l=±;m=1

cqml e−iEl(qm)z|Rl(qm)〉 (8)

It is therefore clear that field revivals are possible at inter-
vals z if E(qm)zT = 2πν where ν is an integer. Therefore
the ratio of any two eigenvalues Em ≡ E(qm) has to be a
rational number, i.e.√

(k − c)2 + 4kc cos2(mπN )− γ2√
(k − c)2 + 4kc cos2(m

′π
N )− γ2

=
α

β
(9)

where α and β are relatively prime integers. At the same
time, revivals in the field intensity are ensured provided
that (Em − Eµ)/(Em′ − Eµ′) = α/β where the indices be-
long to the set {0, 1, ..., N − 1} and are taken at least
three at a time. It is straightforward to show that this
condition is trivially satisfied for the same set of N -input
pattern periodicities as for the fields.

Next we consider the field Talbot revivals of input pat-
terns with period N , at the spontaneous PT -symmetric
point. To this end, we observe that a direct substi-
tution of γ = γPT in Eq. (9) for the ratio Em/E0
leads to the simple condition cos(mπ/N) = α/β. The
latter is re-written in terms of the Chebyshev polyno-
mials which are defined as cos(mx) = Tm(cos(x)) =∑[m]
j=0 c

(m)
j (cos(x))m−2j , where [m] represents the integer

part of m. The Chebyshev coefficients c
(m)
j are integer

numbers and, of importance to our discussion, is the fact

that the first one is given by c
(m)
0 = 2m−1. Given that

FIG. 3: (Color online) Talbot intensity ”carpets” for period-
N input field patterns at the exact phase γ < γPT . Ev-
erything is measured in units of inter-dimer coupling c = 1
while the intra-dimer coupling is k = 4. (a) γ = 0.1 while
in (b) γ = 2. In both cases the input pattern has periodic-
ity N = 1 and it is chosen to be {1, 0, 1, 0, 1, 0, 1, 0, · · · }; (c)

γ =
√

11/3 and (d) γ =
√

7. Now the input pattern has
periodicity N = 2 and it is chosen to be {1, 1, 0, 0, 1, 1, · · · };
(e) γ = 5/

√
17 and (f) γ = 9/

√
10. The input pattern in

these cases is {1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0 · · · } and has period-
icity N = 3. Different Talbot lengths zT are observed between
(a-b) and (c-d) and (e-f).

c
(m)
j are integers, then cos(πmN ) is rational if and only

if cos( πN ) is rational [11]. Using the Chebyshev identity
with m = N (assuming N is an odd number), we obtain
the following polynomial in cos( πN ):

2N−1(cos(
π

N
))N + ...+ cN[N/2] cos(

π

N
) + 1 = 0 (10)

where we have used the fact that TN (cos π
N ) =

cos(Nπ/N) = −1. By applying the rational root the-
orem one can show that the roots of this polynomial in
cos(π/N) are rational only if N = 1, 3. Similar tech-
niques leads to the fact that for even values of N the
only possibility is N = 2 [11]. However, input pat-
terns with N = 2 periodicity, excite the q = ±π Fourier
mode, and therefore based on our previous discussion (see
Eq. (6) above), have to be excluded. Therefore, strictly
speaking, discrete Talbot revivals at the spontaneous
PT -symmetric point are possible only for a finite set of
periodicities N = 1, 3, where for example, the N = 1
case can represent initial patterns {1, 0, 1, 0 · · · , 1, 0} or
{0, 1, 0, 1 · · · , 0, 1} or the more trivial case of a plane wave
with {1, 1, 1, 1 · · · , 1, 1}. Some representative intensity
revivals for N = 1 and 3 periods are depicted in Fig. 2.

The Talbot revivals can appear also in the exact phase
γ < γPT . Simple inspection of Eq. (9) indicates that
an initial periodic pattern with periodicity N = 1 (re-
sulting to eigenvalue index m = 0 in Eq. (7)) leads
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to a rational value α/β = 1. In this case the Tal-
bot length zT depends on the gain and loss parame-
ter as zT = 2π/E0 = 2π/

√
γ2PT + 4kc− γ2 and there-

fore it varies by changing γ. Such reconfigurable be-
havior of the Talbot length is characteristic of the ex-
act phase γ < γPT and can be found also for the
N = 2, 3-period input patterns. For N = 2 (corre-
sponding to eigenvalue indices m = 0, 1 in Eq. (7)) one
can show that for fixed k, c and γPT = k − c such that
γPT /(k + c) > α/β, Eq. ( 9) is satisfied provided that

γ =
√
γ2PT − 4kcα2/(β2 − α2) (we assume that α < β).

Similarly for N = 3, the Talbot revivals are possible
provided that γ =

√
γ2PT + kc[1− 4(α/β)2]/[1− (α/β)2]

where 0.5 < α/β <
√

1− 3kc/(k + c)2. In both cases
the corresponding Talbot length is γ-dependent and it is
given by the largest period zT = 2π/|Ej − El| ∼ 2π/E0
that results from the eigenvalues involved in the initial
pattern. Example cases of Talbot self-imaging revivals
for initial periodic patterns with period N = 1, 2, 3 and
different γ values are shown in Figs. 3a-b; Figs. 3c-d; and
Figs. 3e-f respectively. We see that for the same initial
preparation, the revivals are controlled by γ and can oc-
cur at different Talbot lengths.

In fact, we can show that larger periods N > 3 do not
result in Talbot self-imaging revivals in the exact PT -
symmetric domain. Using Eq.(9), for the |Em|/|E0| =
α/β and enforcing the constrain that γ ≤ γPT = k − c,
one obtains the inequality, cos(mπN ) ≤ α

β which has to be

satisfied together with the equation Eq. (9) (the equality
correspond to the case γ = γPT discussed above). At
the same time cos(mπN ) has m = 0, · · · , N − 1 roots. By
applying the intermediate value theorem one finds out
that this inequality cannot be valid for N > 3.
Experimental Implementation– We would like finally

to suggest possible experimental implementations of the
PT - symmetric waveguide arrays, which will allow for the
observation of the reconfigurable Talbot effect. The pro-
posed structures will involve MBE grown quantum wells
(QW) that will be patterned to form coupled waveguides.
The basic PT structural element of the array shown in
Fig. 1, involves two PT -symmetric sites (dimer). Such a
design is desirable because of its simplicity. The dimen-
sions and index contrast can be such that each waveg-
uide will be single-moded. For example, for AlGaAs
structures this can be achieved by a refractive index of

n0 = 3.35 operated at 800 nm. Reconfigurable gain can
be achieved by running an electric current through a Al-
GaAs/GaAs QW p-n junction. In such structures one
can easily reach gain and loss values as high as 50cm−1.
The two site channels in every dimer will be excited at
different current levels I1 and I2 so as to establish the
antisymmetric gain and loss profile that is necessary to
observe PT optical behavior. In practice this will be
done provided that current I1 � I2 so as the correspond-
ing regions underneath see equal amount of gain and loss.
More specifically, I2 will be relatively small so the associ-
ated waveguide site will experience material absorption.
Its sole purpose will be for fine tuning. Given that I1
and I2 can be interchanged and adjusted, this will allow
us to dynamically control the Talbot length zT of these
PT -symmetric structures. Of course, special considera-
tion has to be given to the effects of gain and loss on the
modal index change in these structures (because of the
Kramers-Kronig relations).

Finally we comment on the robustness of Talbot re-
vivals against structural imperfections. For realistic val-
ues of positional imperfections (up to 5% of the inter-
dimer coupling) we have confirmed numerically that Tal-
bot revivals are only slightly distorted. Specifically we
found that revivals associated with short Talbot lengths
zT , are essentially unaffected for moderate propagation
distances z while revivals associated with larger lengths
zT are fragile due to the distortion of the delicate balance
between the mode amplitudes and phases that eventually
dominate the evolution.

Conclusions– In conclusion, we have shown that a class
of PT -symmetric optical lattices, support Talbot self-
imaging revivals for input patterns with periodicities dic-
tated by the discreteness of the lattice and the strength
of gain and loss parameter. Of interest will be to investi-
gate if Talbot revivals can also occur in higher dimensions
and in the presence of non-linearity. Our results might
be applicable to other areas like self-imaging of coupled
lasers [10] with distributed gain and synchronization of
PT -symmetric coupled electronic oscillators [16].
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