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Application of the shell model Monte Carlo method to odd-particle-number systems has been
hampered by the sign problem that originates from the projection on an odd number of particles.
We introduce a novel method that avoids this sign problem by extracting the ground-state energy of
a finite-size system with an odd number of particles from the asymptotic behavior of the imaginary-
time single-particle Green’s functions of the even-particle-number system. We apply this method

to calculate pairing gaps of nuclei in the iron region.

experimental pairing gaps.

Our results are in good agreement with

PACS numbers: 21.60.Ka, 21.60.Cs, 21.60De, 21.10.Dr, 27.40.+z, 27.40.+e, 26.50.+x

Introduction. The shell model Monte Carlo (SMMC)
approach [1-4] has been used successfully to calculate sta-
tistical properties of nuclei [5-7] within the framework of
the configuration-interaction shell model. Recently, this
method has also been applied to trapped cold atom sys-
tems [8, 9]. The SMMC method enables calculations in
model spaces that are many orders of magnitude larger
than those that can be treated by conventional diagonal-
ization methods.

For typical effective nuclear interactions, the SMMC
method breaks down at low temperatures because of the
so-called fermionic sign problem, leading to large statis-
tical errors. In the grand-canonical ensemble, the sign
problem can be avoided by constructing good-sign inter-
actions that include the dominant collective components
of effective nuclear interactions [10]. The remaining part
of the effective interaction can be accounted for by using
the method of Ref. 2.

In finite-size systems, such as nuclei, it is necessary
to use the canonical ensemble, in which the number of
particles is fixed. This particle-number projection gives
rise to an additional sign problem when the number of
particles is odd, leading to a rapid growth of statistical
errors at low temperatures even for good-sign interac-
tions. Consequently, it has been a major challenge to
make accurate estimates of the ground-state energy of
odd-particle systems in SMMC. Accurate ground-state
energies are necessary for the calculation of level densi-
ties and pairing gaps (i.e., odd-even staggering of binding
energies).

Here we develop a method based on the asymptotic
behavior of the imaginary-time single-particle Green’s
functions of an even-particle system to calculate ground-
state energies of neighboring odd-particle systems. This
method is somewhat similar in spirit to a technique used
in lattice quantum chromodynamics to extract hadron
masses (see, e.g., in Ref. 11). We apply our Green’s func-
tion method to calculate pairing gaps of nuclei in the iron
region using the complete fp + gg/o shell model space.

Green’s functions in SMMC. The SMMC method is

based on the Hubbard-Stratonovich representation of the
imaginary-time propagator, e ## = [ D[o]|G(0)U,(B),
where 3 is the inverse temperature, H is the Hamilto-
nian, D[o] is the integration measure, G(o) is a Gaussian
weight, and U, (8) is the propagator of non-interacting
nucleons moving in external auxiliary fields o that de-
pend on the imaginary time 7 (0 < 7 < ). The canonical
thermal expectation value of an observable O is given by
= [ Dio] TrAOU B))/ [ Dlo]G(o)Tr 4Us(B),
where Tra denotes a trace over the subspace of a fixed
number of particles A. In actual calculations we project
on both proton number Z and neutron number N, and
in the following A will denote (Z, N).
For a quantity X, that depends on the auxiliary fields
o, we define

¥, = [DEwoe, "

where W (o) = G(0)TraU, and &, = W(o)/|W(0o)| is
the sign. With this definition, the above thermal expec-
tation of an observable O can be written as (O) = (O),,
where (0)y = Tr[OU,(8)]/TraUs(3). In SMMC we
choose M samples o according to the weight function
|[W(o)|, and estimate the average quantity in (1) by
XU ~ Zk Xqu)dk/ Zk (I)Uk'

For an even number of particles with a good-sign in-
teraction, the average value of the sign ®, remains close
to 1. However, when the number of particles is odd, the
average sign decays towards zero as the temperature is
lowered. This leads to rapidly growing errors, hampering
the direct application of SMMC at low temperatures for
odd-particle systems.

For a rotationally invariant and time-independent
Hamiltonian, we define the following scalar imaginary-
time Green’s functions [12]

Tr 4 [ e PHT d>om a,,m(T)a:f,m(O)}
Try e BH ’

G,(r) = (2)

where v = (nlj) labels the nucleon single-particle orbital



with radial quantum number n, orbital angular momen-
tum [ and total spin j. Here 7 denotes time ordering
and a,,,(7) = e 7a,,,e”™ is an annihilation operator
of a nucleon at imaginary time 7 (—f < 7 < ) in a
single-particle state with orbital ¥ and magnetic quan-
tum number m (—j < m < j).

Using the Hubbard-Stratonovich transformation, the
Green’s functions defined in (2) can be written in a form

suitable for SMMC calculations

Z [Us (T)(I— <ﬁ>0]vm,vm fort >0

m

G,(1)= 7
>[0T 7], for 7 <0

m

(3)
where we have used the notation in Eq. (1). Here U,(7)
and I are matrices in the single-particle space repre-
senting the propagator U,(7) and the identity, respec-
tively. (p), is a matrix in the single-particle space whose
vm,v'm’ matrix element (f,m, 7m/)s is defined in terms
of the one-body density operator pym, ,/m = al,m,a,jm.

Assuming A is an even-even nucleus, Ay = (Z, N £1)
are neighboring odd-even nuclei with odd number of neu-
trons. We denote by E;(A) the lowest energy eigenvalue
of a given spin J for the A-particle nucleus, and de-
fine E;(Ay) similarly for the A-particle nucleus. We
also define AE;(Ay) = Ej(Ay) — Eo(A).  Assum-
ing that the ground state of the even-even nucleus has
spin zero [i.e., Eg(A) = Ey(A)], the ground-state en-
ergy of the odd-even nucleus is given by, Egs(A+) =
FEes(A) + AEnin(Ax), where AE,,;, is the minimum of
AE;(Ay) over the possible values of J.

The energy FEqs(A) can be calculated directly from
SMMC. In this work we show how AFi,(A+) can be
calculated accurately using the single-particle Green’s
functions of the A-particle system, thereby enabling an
accurate estimate of Egs(AL)

The neutron Green’s function G, (7) that corresponds
to an orbital with angular momentum j describes for 7 >
0 (7 < 0) a process that connects the J = 0 ground state
of the even-even nucleus A to intermediate states in the
odd-even nucleus A4 (A_) with spin J = j. It can be
written as

Gu(r) = 271 (B)e PP [Rye BPsm DI 156,

(4)
where the + (—) subscript should be used for 7 > 0
(1 <0), Z(B) is the partition function of the A-particle
nucleus, and R, is proportional to the square of the re-
duced matrix element of a, between the ground state of
the A-particle nucleus and the lowest spin J = j eigen-
state of the A.-particle nucleus. The contribution from
excited states is denoted by 0Gex. Clearly, 6Gex is a sum
of products of decaying exponentials which depend on
excitation energies in the Ay- and A-particle systems,

and squares of matrix elements of a, between the corre-
sponding eigenstates.

When §Gox is much smaller than the first term inside
the square brackets on the r.h.s. of Eq. (4), the 7 depen-
dence of the Green’s function can be well approximated
by a single exponential, G, (1) ~ e 2Fi(A=)ITI n this
asymptotic regime for 7, we can calculate AE;(A4), and
hence Egs(A+) from the slope of InG, (7). This is the
method we use here to calculate the ground-state en-
ergy of odd-A nuclei with odd number of neutrons. The
ground-state energy of odd-A nuclei with odd number
of protons can be similarly calculated using the proton
Green’s functions.

In principle, the asymptotic regime is accessed in the
limit 8 — oo and |7| — oo with |7| < 8. However, in a
shell-model Hamiltonian with discrete, well separated en-
ergy levels, only a few transitions give significant contri-
butions. If the relative contribution from §Gex in Eq. (4)
is less than a few percent, then (assuming that |7| ~ 1
MeV) the sensitivity of the slope of In G, (7) to this con-
tribution is about a few tens of keV, which is comparable
to our target accuracy. For low- and medium-mass nuclei,
we expect the energy differences to be 2 1 MeV and the
square matrix elements to be smaller than R,. Thus, cal-
culations with 3 of a few MeV~! and with an asymptotic
regime of 7 ~ 1 MeV should be sufficient. This can be
validated explicitly in sd-shell nuclei (see below), whose
Hamiltonian can be diagonalized numerically. For larger
model spaces, it is not possible to calculate explicitly the
corrections in the sum of Eq. (4), and the asymptotic re-
gion has to be determined by the goodness of the linear
fits to In G, (7).

Results. We first tested the Green’s function method in
sd-shell nuclei and then applied it to medium-mass nuclei
in the complete (pf + gg/2) shell. In these nuclei, we car-
ried out calculations for several values of 8 in the range
3MeV™! < 8 < 4MeV™!. For each 3, we calculated
G, (1) for a range of values of 7 in steps of 1/32 MeV 1.
The energy differences AE (A4 ) are then calculated by
fitting straight lines to In G, () in the asymptotic region
using generalized least squares regression.

We chose the asymptotic region such that the fits have
x? per degree of freedom ~ 1. We find a good asymptotic
region to be 0.5 MeV~! < 7 <2 MeV~!. For this choice
the x? per degree of freedom is between 0.8 and 1.2 for
the cases we considered. The energies are calculated for
each value of 8 and a weighted average of the energies at
different values of 3 is then taken.

In a few selected cases, we also performed calculations
for larger values of 8 (i.e., 8 > 4 MeV~1), and found the
corresponding values of A Fin (AL) to be consistent with
those obtained in the region 3 MeV ! <p <4 MeV 1.
This indicates that for the model spaces and particle
numbers considered, the above chosen values of [ are
sufficiently large to isolate the ground state of the corre-
sponding even-even nucleus.
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FIG. 1. The absolute value of logarithm of the Green’s func-
tion (2) for the neutron orbital v = 1p3,, in *°Fe (lower curve,
7 > 0) and *®Fe (upper curve, 7 < 0) at § = 4 MeV~!. The
solid blue lines are linear fits for 0.5 MeV ™! < |7| < 2 MeV ™.
The slope of the fitted line in the lower (upper) curve provides
the energy difference between the lowest J = 3/2 state in *'Fe
and the ground state of ®Fe (*®Fe). The insets show the de-
viations from the linear fits.

For a given odd system (an odd-even nucleus) there are
two neighboring even systems (even-even nuclei), and our
method can be used by starting from either of the even
systems. The ground-state energies we get from these two
calculations are consistent with each other, providing an
independent validation of our method. Unless otherwise
noted, the results we report here are the average of both
of these calculations.

To test the validity and accuracy of our method, we
performed calculations in the sd shell using a schematic
good-sign Hamiltonian. In all cases, our results devi-
ated no more than 0.1% from the exact ground-state en-
ergies, obtained by diagonalizing the Hamiltonian with
the 0XBASH code [13]. For example for 2?Si we found a
ground-state energy of —133.98 + 0.04 MeV compared
with the exact result of —133.95 MeV. Our method also
reproduced correctly the ground-state spin in all cases.

We applied our method to nuclei in the (pf+gg,2) shell,
using the isospin-conserving Hamiltonian of Ref. [5].
Typical results are demonstrated in Fig. 1, in which the
absolute value of the logarithm of the Green’s functions
for the neutron orbital v = 1pz/5 in *Fe (7 > 0) and
in 58Fe (7 < 0) are plotted versus || for 3 = 4 MeV 1.
The linear fits (solid lines) were used in the calculation
of the ground-state energy of 5"Fe. The deviations from
the linear fits are shown in the insets of Fig. 1.

A direct application of the SMMC method to the odd-
particle systems suffers from a sign problem which leads
to very large statistical errors at low temperatures. In
contrast, the method presented here does not have such
problem. This is illustrated in Fig. 2 where we com-
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FIG. 2. The energy of the 5"Fe nucleus calculated from the
present method and direct SMMC are shown by solid and
open squares, respectively. The error bars describe the statis-
tical errors. Inset: the statistical errors for the energy of *"Fe
in the present method (solid squares) and in direct SMMC
calculations (open squares) are shown on a logarithmic scale.
The statistical errors for the energy of °°Fe using the same
Hamiltonian are shown by open circles.

pare the energy and its statistical error for the °"Fe nu-
cleus in the present method (using the neutron Green’s
functions of 56Fe) with the results obtained from the di-
rect method. The errors in the present method remain
roughly constant with 5. At 8 = 3 MeV~! the statis-
tical error in the direct method is about 5 times larger
than the present method while at 8 = 4 MeV ™! it is
about 20 times larger. The inset shows the statistical er-
rors on a logarithmic scale. For comparison we have also
included the statistical error in the energy of the even-
even nucleus *°Fe using the same Hamiltonian. We note
that the total computational time for a given value of 3
increases by less than a few percent when the Green’s
function calculations are included.

We applied our Green’s function method for fami-
lies of odd-neutron isotopes: 47~49Ti, 51=57Cr, 53— 61Fe,
59-65Nj, 63-67Zn and "'~73Ge. The ground-state spins
we determine are in agreement with experimental values
in all cases except for 47Ti, °"Fe and 93Ni. The anomalous
ground-state spin of >"Fe from the shell model perspec-
tive is well documented in the literature [14].

In our method we extract directly the odd-even ground
state energy differences, and therefore this method is par-
ticularly suitable for accurate calculations of pairing gaps
(i.e., odd-even staggering of masses).

When extracting an odd-even ground-state energy dif-
ference such as AEy,in (A4 ) we use the Hamiltonian of the
A nucleus for both the A, and A nuclei. Since the fp+
go/2-shell Hamiltonian we use is nucleus-dependent [5], it
is necessary to correct the ground-state energy of the A
nucleus. As the latter is an even-even nucleus, this cor-
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FIG. 3. Neutron pairing gaps A,, as a function of mass num-
ber A in fp 4+ gg/2-shell nuclei. The gaps calculated with the
present Green’s function method (solid circles connected by
solid lines) are compared with the experimental gaps (open
circles connected by dashed lines). The theoretical statistical
errors are smaller than the size of the symbols.

rection can be found in direct SMMC calculations for
the A nucleus. However, this correction can also be esti-
mated as follows. The dependence of the interaction on
the nucleus is rather weak; the strengths of the multipole-
multipole interactions depend weakly on the mass num-
ber A (o< A='/3) and the monopole pairing strength is
constant through the shell. The largest variation among
neighboring nuclei is that of the single-particle energies
eu(A) of the orbitals pu. Correcting for this variation, the
neutron separation energy for the A, nucleus is given by

Su(Ar) = ~AFin(Ay) + 3 len(A) — 0 (A (1)
' (5)

where (n,) 4 are the average occupation numbers for the
A nucleus using the Hamiltonian for the A, nucleus. The
second term on the r.h.s. of (5) approximates the differ-
ence between the ground-state energies of the A nucleus
when calculated using the respective Hamiltonians for
the A and A4 nuclei. We verified (in sd-shell nuclei) that
this approximation is highly accurate and well within a
typical statistical error. In our calculations we used (5)
since the resulting statistical error is much smaller than
the statistical error of direct SMMC calculations.

The neutron separation energy for the A nucleus is
given by a similar expression. The neutron pairing gaps
can then be calculated from the differences of separation
energies A, (A) = (=)V[S,(Ay) — Sn(A)]/2, where A
can now be either an even-even or an odd-even nucleus.

Our calculated pairing gaps are shown in Fig. 3 (solid

circles), where they are compared with the experimental
pairing gaps (open circles) as determined from odd-even
staggering of binding energies. The statistical errors for
the calculated pairing gaps (~ 0.01 MeV) are not visi-
ble in the figure. Our results agree quite well with the
experimental values; in most cases the deviation of the
theoretical pairing gaps from their experimental coun-
terparts is less than 15%. Systematic deviations are ob-
served for the iron isotopes above A = 59 and for the
germanium isotopes. For the germanium isotopes the
size of the model space might be insufficient, while the
deviation for the iron isotopes indicates the necessity to
refine our isospin-conserving Hamiltonian.

Conclusion. We have described a practical method
that circumvents a sign problem for calculating the
ground-state energy of odd-particle-number systems in
the framework of the SMMC approach. We demon-
strated the usefulness of the method by calculating pair-
ing gaps of nuclei in thefp+ gg/2 shell. This method can
also be applied to other finite-size many body systems
such as trapped cold atoms. In principle, this method
can be used more generally to calculate the lowest en-
ergy state for a given spin. Although the higher excited
states typically have large statistical error, low-lying ex-
citations can often be estimated quite accurately using
this method. This problem could be addressed in future
research.
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