
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Virtual Parallel Computing and a Search Algorithm Using
Matrix Product States

Claudio Chamon and Eduardo R. Mucciolo
Phys. Rev. Lett. 109, 030503 — Published 20 July 2012

DOI: 10.1103/PhysRevLett.109.030503

http://dx.doi.org/10.1103/PhysRevLett.109.030503

LP12782

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Virtual parallel computing and a search algorithm using matrix product states

Claudio Chamon1 and Eduardo R. Mucciolo2

1Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2Department of Physics, University of Central Florida, Orlando, Florida 32816, USA

We propose a form of parallel computing on classical computers that is based on matrix product
states. The virtual parallelization is accomplished by representing bits with matrices and by evolving
these matrices from an initial product state that encodes multiple inputs. Matrix evolution follows
from the sequential application of gates, as in a logical circuit. The action by classical probabilistic
one-bit and deterministic two-bit gates such as NAND are implemented in terms of matrix operations
and, as opposed to quantum computing, it is possible to copy bits. We present a way to explore
this method of computation to solve search problems and count the number of solutions. We argue
that if the classical computational cost of testing solutions (witnesses) requires less than O(n2)
local two-bit gates acting on n bits, the search problem can be fully solved in subexponential time.
Therefore, for this restricted type of search problem, the virtual parallelization scheme is faster than
Grover’s quantum algorithm.

Interference and the ability to follow many history
paths simultaneously make quantum systems attractive
for implementing computations [1]. Efficient algorithms
exploring these properties have been proposed to solve
practical problems such as number factoring [2] and un-
sorted database search [3]. However, we still do not have
a sufficiently large and resilient quantum computer to
take advantage of these algorithms. It is thus very de-
sirable to try to find better and more efficient ways to
compute with classical systems. In this regard, recent
advances in our understanding of quantum many-body
systems provide some guidance. It is well understood
now that the time evolution of a large class of one-
dimensional interacting systems can be efficiently sim-
ulated by expressing their wave functions in a matrix
product state form and by using a time-evolving block
decimation (TEBD) [4]. A key aspect of this success
is data compression: Even though many-body interac-
tions tend to increase the rank of the matrices over time,
it is possible to use truncation along the evolution to
keep the matrices relatively small, such that the result-
ing wave function approximates quite accurately the ex-
act one without an exponential computation cost [5]. In
quantum systems, it is well understood that local inter-
actions do not quickly entangle one-dimensional many-
body state, justifying the matrix truncation [6, 7].

In this Letter, we describe a method of classical com-
putation that utilizes matrix product states (MPS) to
implement search and other similar tasks. Compression,
when possible, provides additional speedup. Formally,
instead of working with wave functions and quantum am-
plitudes, we describe the state of the computer in terms
of a stochastic probability distribution written as traces
of matrix product states associated to bit configurations.
The idea of expressing classical probability distributions
in the form of MPS is not new [8], but the focus so far has
been on using it to study non-equilibrium phenomena of
physical systems (see for instance Ref. 9). As we show
below, an MPS formulation of classical probability distri-

butions can also be employed to create a virtual parallel
machine where all possible outcomes of an algorithm are
obtained for all 2n inputs of an n-bit register. Informa-
tion about these outcomes is encoded and compressed
in the matrices forming the MPS. By itself this “paral-
lelism” is not obviously useful; it is, however, if a certain
problem can use the probability of a single outcome at
a time. This is the case of a search problem that seeks,
for a given y, the value of x such that y = f(x) for an
algorithmically computable function f . Then, the focus
is not on all values of the output, but on only one given y.
We shall show below that in this case matrix computing
can be useful. In particular, from the probability of y,
the method directly provides the number of input values
x satisfying the functional constraint y = f(x).
In our matrix computing, insertion and removal of bits

are allowed and one-bit and two-bit gates can be im-
plemented much like in a conventional computer. Our
one-bit gates are probabilistic while our two-bit gates
are deterministic. Two-bit gates rely on a singular value
decomposition (SVD) to maintain the MPS form of the
probability distribution. All these operations preserve
the positivity and the overall normalization of the prob-
ability even though we work with non-positive matrices.
Matrix computing formulation – Consider a set of bi-

nary variables {xj = 0, 1}j=1,...,n describing a set of n
bits, with |x1 x2 . . . xn〉 ≡ |x〉 denoting a particular con-
figuration of this system. In analogy to quantum me-
chanics, we define the vector

|P 〉 =
∑

xn,...,x1=0,1

P (x1, . . . , xn) |x1 . . . xn〉, (1)

where

P (x1, . . . , xn) = tr (Mx1

1 · · ·Mxn
n) . (2)

Here, each M
xj

j is a real matrix of dimensions Dj−1×Dj.
The trace can be dropped if we consider the first and last
matrices to be row and column vectors, i.e., D0 = Dn =

2

1. The state vector is normalized in the following sense:
Define |Σ〉 =

∑

x1,...,xn=0,1 |x1 . . . xn〉, then Z = 〈Σ|P 〉 =
1 since

∑

x P (x) = 1.
Starting from an initial probability distribution

P0(x1, . . . , xn), the vector |P 〉 evolves as a sequence of
one-bit and nearest-neighbor two-bit gates are applied to
the bits matrices. These bit operations form a logical
circuit, which is tailored according to a particular com-
putational problem; for instance, the algorithmic com-
putation of a function f(x). Below, we describe how bit
operations are implemented.
• One-bit gates: We will use probabilistic one-bit gates,

which take states 0, 1 to states 0, 1 with probabilities
p, 1− p and q, 1− q:

0
p−−→ 0 or 0

1−p−−→ 1

1
1−q−−→ 0 or 1

q−−→ 1 .

The probabilities can be encoded into a transfer function
tã,a that takes a logic input a = 0, 1 into a logic output
ã = 0, 1. Explicitly: t0,0 = p, t1,0 = 1 − p, t0,1 = 1 − q,
t1,1 = q. A one-bit gate acting on bit j yields a new
matrix

M̃
xj

j =
∑

x′

j=0,1

txj ,x
′

j M
x′

j

j . (3)

The transfer function satisfies the sum rule
∑

ã=0,1 t
ã,a =

1, which ensures that the normalization Z = 1 is main-
tained as the system evolves. Examples of one-bit gates
are: (a) Deterministic NOT, with p = 0 and q = 0, (b)
RAND, with p = 1/2 and q = 1/2, which randomizes the
bit, (c) RST, with p = 1 and q = 0, which resets the bit
to 0.
• Two-bit gates: We will consider only deterministic

two-bit gates. Given two logical functions A(a, b) and

B(a, b), we construct the transfer function T ãb̃,ab, tak-
ing bits with states a and b to bits with states ã and b̃,
respectively:

T ãb̃,ab =

{

1, ã = A(a, b) and b̃ = B(a, b),

0, otherwise.
(4)

Similarly to one-bit gates, the normalization after two-bit

gates is preserved by the sum rule
∑

ã,b̃=0,1 T
ãb̃,ab = 1.

The evolved matrices must satisfy

M̃
xj−1

j−1 M̃
xj

j =
∑

x′

j−1
,x′

j=0,1

T xj−1xj ,x
′

j−1,x
′

j M
x′

j−1

j−1 M
x′

j

j ,

(5)
and we use the SVD to decompose the result of the gate
operation on the right-hand side of Eq. (5) as a product
of two matrices, as in the left-hand side of the equation,
for all the four cases xj−1, xj = 0, 1.
Let us demonstrate this construction with a concrete

example. Consider the following logical operation on bits

j − 1 and j: ANAND(a, b) = a and BNAND(a, b) = a ∧ b.
The first bit is unaffected, while the second one evolves
into the NAND operation between the two bits. In this
case, T 01,00 = T 01,01 = T 11,10 = T 10,11 = 1, with all
other elements set to zero. We use the transfer function
to determine the four blocks (for xj−1, xj = 0, 1) of a
matrix MNAND

j−1,j of dimension 2Dj−2 × 2Dj:

MNAND
j−1,j =









0 M0
j−1M

0
j +M0

j−1M
1
j

M1
j−1M

1
j M1

j−1M
0
j









. (6)

To factor the matrix Mj−1,j back into a product, we
employ an SVD,

Mj−1,j
SVD
=





M̃0
j−1

M̃1
j−1





(

M̃0
j M̃1

j

)

. (7)

In this process, the common dimension Dj−1 may change
and likely increase. This is an issue of fundamental im-
portant, which we shall return when we discuss a search
algorithm.
• Bit insertions and removals: For computational tasks

such addition and multiplication, it is important to be
able to insert and remove bits. These operations are
straightforward for MPS. Insertion of a new bit (say,
initially set to 0) in between bits j − 1 and j amounts
to replacing M

xj−1

j−1 M
xj

j with M
xj−1

j−1 Mxα
α M

xj

j , where M1
α

and M0
α are Dj−1 × Dj−1 null and identity matrices,

respectively, and the total sum over bit configurations
in the vector |P 〉 [see Eq. (1)] has now to include
the binary variable xα = 0, 1. Removal of a bit is
done by absorbing its matrix into the one of an adja-
cent bit, namely, by tracing it out; for instance, we use
∑

xj=0,1 M
xj

j M
xj+1

j+1 = M̃
xj+1

j+1 to remove bit j.

How can matrix computing be used to solve certain

computational problems? – Here we shall present compu-
tational algorithms that explore the virtual parallelism
encoded in matrix product states. To be concrete, con-
sider the following search problem as an example:

Given a function y = f(x) that can be computed al-
gorithmically with O(nd) gates and a certain value
for y, we would like to search for an input x that
yields as output y = f(x).

The reason why matrix computation is useful for this
search problem can be argued as follows. Matrix product
states can express the probability values of all possiblem-
bit outputs y ≡ y1 y2 . . . ym if one starts with a product
state encoding all possible n-bit inputs x ≡ x1 x2 . . . xn,
namely, P (x) = 2−n for all x. Of course, if we were inter-
ested in all the probabilities, we would have to compute
an exponentially large (2m) number of traces of products
of matrices. But this is not what is needed to perform

3

the search above: We are interested in just one output y
for this problem. We thus proceed in the following steps.

1. Starting with all bits xi, i = 1, . . . , n, random-
ized with equal probabilities 1/2 for being 0 or 1,
we compute the final output matrices M

yj

j , j =
1, . . . ,m, resulting from the action of the circuit
that evaluates f(x).

2. We compute the probability P (y) for the given y
we are interested in. If P (y) ≥ 2−n, then there is
at least one value of x such that y = f(x).

3. We then fix one of the input bits, say x1, to be
0, instead of randomizing it. We recompute the
output matrices M

yj

j , j = 1, . . . ,m, and the new
probability P (y). Again we test if the probability
is above the threshold, P (y) ≥ 2−n+1 in this case.
If the probability fell below the threshold, we must
reset x1 to 1. (Notice that since there may be more
than one x for a given y, that P (y) stays above
threshold does not mean that switching to x1 = 1 is
necessarily forbidden, but we shall stick instead to
x1 = 0 in this case to avoid unnecessary iterations.)

4. We repeat step 3 fixing now input bit x2, then re-
peat it again fixing input bit x3, and so on until
we finally fix input bit xn. At the end of n steps,
having fixed all the n bits of the input, we have
arrived at one value for x such that y = f(x).

Let us discuss the computational cost of such algo-
rithm. To simplify the discussion, let us present it in
terms of the largest matrix dimension D in the compu-
tations, which we shall relate to the number ng of gates
involved in the computation of the function f(x). All
SVD steps involve matrices with rank smaller or equal
to D; therefore, the cost associate to gate operations is
no more than O(ng × D3). One has also to compute
the trace of the matrix products for a fixed y to yield
the probability P (y), and this takes time no more than
O(n×D3). We then have to repeat the procedure fixing
bit-by-bit the xi, i = 1, . . . , n. Therefore, in the worst
case it takes a time O(n×max{ng, n} ×D3) to find x.
The largest computational cost comes from the SVD

and trace steps, which depend on the rank D of the ma-
trices. The crucial issue is how D scales with either
the number of bits n or the number of gates ng for a
given algorithm to compute f(x). We shall prove be-
low the following result: The maximum dimension of
any matrix in a computation using ng nearest-neighbor
gates in a system with n bits is bounded by D ≤
Dmax(n, ng) = min

(

2⌊
√

2ng⌋, 2⌊n/2⌋
)

. The consequence

of this result on the computational time is as follows.
As we argued above, the search algorithm takes a time
O(n ×max{n, ng} ×D3). For a function y = f(x) that
can be computed with ng ∼ nd gates, the time to search

for an x that gives a fixed y has two different behav-
iors depending on whether d < 2 or d ≥ 2. If d < 2,

Dmax ∼ 2
√
2nd/2

, and thus the search takes, in the worst

possible case, a time O(nd+1 × 23
√
2nd/2

) using matrix
computing algorithms. If instead d ≥ 2, Dmax saturates
to Dmax ∼ 2n/2 and in the worst possible case the com-
putation (without discarding singular values) takes expo-
nential time. In other words, there is a transition between
subexponential and exponential behavior at dc = 2. It
thus follows that for any function f(x) that can be com-
puted with ng < O(n2) gates, the full search problem
can be solved faster using matrix computing than using
Grover’s quantum algorithm, which scales as O(2n/2).

Proof of the bound on the largest bond dimension –
Upon application of a two-bit gate on bits j−1 and j, the
dimension Dj−1 will increase as follows. Starting with
Dj−2 × Dj−1 matrices M

xj−1

j−1 and Dj−1 × Dj matrices

M
xj

j , one assembles a 2Dj−2 × 2Dj matrix Mgate
j−1,j [see

the example of the NAND gate in Eq. (6)]. The SVD step
will lead to Dj−2× D̃j−1 matrices M̃

xj−1

j−1 and D̃j−1×Dj

matrices M̃
xj

j , where the new bond dimension D̃j−1 =
min(2Dj−2, 2Dj). It is useful to work on a logarithmic

scale and define hj = log2 Dj . Thus we can write h̃j−1 =
min(hj−2, hj) + 1.

Let us next prove that at any step in the algorith-
mic evolution the “entanglement heights” hj satisfy the
condition |hj − hj−1| ≤ 1, ∀j, which we shall refer to
as the height difference constraint (hdc). The proof is
done by induction. At the initial state of the calculation,
one starts with the product state of all possible equally
weighted inputs x, which correspond to 1 × 1 matrices
or, equivalently, all hj = 0, so that |hj − hj−1| = 0 ≤ 1,
thus satisfying the condition. Now suppose that the con-
dition is satisfied at step τ ; we can show that it is then
also satisfied at step τ + 1, when a two-bit gate is ap-
plied between two adjacent bits j − 1 and j. None of
the heights other than hj−1 → h̃j−1 are changed, there-
fore the hdc condition |hj − hj−1| ≤ 1 remains satisfied
for all i < j − 1 and i > j, and it just remains to be
shown that it is satisfied for i = j − 1 and i = j. Con-
sider the case where hj−2 ≤ hj (the other case hj ≤ hj−2

is analogous). In this case h̃j−1 = hj−2 + 1, satisfy-

ing the condition |h̃j−1 − hj−2| ≤ 1. Now hj − h̃j−1 =
hj − hj−2 − 1 = (hj − hj−1) + (hj−1 − hj−2) − 1, and
using that hj − hj−1 ≤ 1 and hj−1 − hj−2 ≤ 1, as well

as that hj−2 ≤ hj , we have that |hj − h̃j−1| ≤ 1. It
thus follows that the hdc condition |hj − hj−1| ≤ 1, ∀j is
satisfied at all steps in the calculation. An example of a
configuration of entanglement heights satisfying the hdc
is show in Fig. 1.

If all we do to evolve the state is to apply two-bit gates,
we have shown that |hj − hj−1| ≤ 1, ∀j. It is easy to
see that after a bit insertion the condition is still sat-
isfied, because the change in height is zero on the two
sides of the inserted bit (corresponding to a square ma-

4

10 2 3 5 6 7 8 94 10 11 12 j
0

2

4

h

6
j

FIG. 1. Example of a configuration of entanglement heights
(hj = log

2
Dj) satisfying the height difference constraint

|hj − hj−1| ≤ 1, ∀j when n = 12. The dashed line shows
the configuration with maximum heights.

trix), with all other relative height differences unchanged.
The removal (tracing out) of bits is slightly more subtle.
Right after the removal, there are large jumps across the
region where the bits were removed, but these can be
brought up to satisfy the hdc by applying a series of two-
bit identity gates [A(a, b) = a and B(a, b) = b] sweeping
from left-to-right followed by another from right-to-left.
These sweeps remove the height “faults” (and actually
tend to decrease the overall height). Therefore we arrive
at the result that the hdc condition is satisfied after all
operations, two-bit gates, bit insertions, and bit deletions
(after the identity sweeps).
Let us now show that the maximum height resulting

from the application of ng two-bit gates is bounded by
hmax ≤ ⌊

√

2ng⌋. The application of a single two-bit gate

on bits j − 1 and j changes the height hj−1 → h̃j−1 =
min(hj−2, hj) + 1. Because the relative heights of neigh-
boring bonds cannot differ by more than 1 unit due to
the hdc, the maximum amount that the height h̃j−1 can
increase with respect to hj−1 is by 2 (which occurs when
hj−2 = hj = hj−1 + 1). Therefore one can write that
S =

∑

i hi ≤ 2ng. Now, suppose that the maximum
height is hmax at some bond labelled by imax (located
to the right of bit imax); because the heights h0 to the
left of the 1st bit and hn to the right of the nth bit are
both equal to 0 at all times, and because of the hdc con-
dition, there are constraints on how quickly the heights
can grow from 0 to hmax at imax and then decrease down
to 0 again. The climb and descent that minimize the
area S can be trivially seen to be a triangle where hj

increases linearly from j = imax − hmax to j = imax, and
then decreases linearly until j = imax+hmax. The area of
this triangle is Smin = h2

max, and any other height profile
that reaches the same maximum height hmax has equal
or larger area. Therefore, h2

max ≤ S ≤ 2ng, and thus we
arrive at the conclusion that hmax ≤ ⌊

√

2ng⌋, i.e., the
bound on the maximum entanglement height for a given
number of gates. Furthermore, because of the hdc and
the fact that h0 = hn = 0, the entanglement height for a
fixed j is bounded by hj ≤ min(j, n− j), and the overall
maximum hmax = ⌊n/2⌋ is reached at the center of the
chain, j = ⌊n/2⌋ and j = ⌈n/2⌉ (which coincide when n

is even).
Putting all the conditions together, we arrive at

hmax ≤ min
(

⌊
√

2ng⌋, ⌊n/2⌋
)

, or equivalently, the bound

D ≤ Dmax(n, ng) = min
(

2⌊
√

2ng⌋, 2⌊n/2⌋
)

which we used

to obtain the absolute maximum running time of the
search algorithm.

Conclusions – We have shown that it is possible to
achieve virtual parallelization in single-processor classical
computers using one-bit and two-bit local gates acting on
matrix product states over n bits. Based on this method,
we propose a search algorithm that runs in subexponen-
tial time when the cost to check a witness requires less
than O(n2) two-bit gates. This critical bound in the cir-
cuit size was obtained assuming a worst-case scenario for
the matrix dimension growth as a function of the num-
ber of two-bit gates. However, for particular circuits,
the actual rank of the matrices may grow slower than
this estimate, in which case some speedup is possible.
In addition, during gate operations and matrix decom-
positions, if the singular values decay sufficiently fast, it
may be possible to reduce matrix rank growth through
truncation, similarly to the standard procedure used in
quantum methods such as the TEBD [4] and its classi-
cal version for stochastic evolution, the cTEBD [9]. This
question is open to future investigation.

The method is not limited to one-dimensional bit ar-
rays and could in principle be extended to higher di-
mension tensor products. Finally, we point out that the
method also naturally counts the number of satisfying as-
signments of a given Boolean formula, which is a problem
of much importance in Computer Science.

This work was supported in part by the NSF grants
CCF-1116590 and CCF-1117241. The authors thank P.
Wocjan for useful discussions.

[1] D. Deutsch, Proc. R. Soc. London A 400, 97 (1985).
[2] P. W. Shor, SIAM J. Sci. Statist. Comput. 26, 1484

(1997).
[3] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[4] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003); ibid 93,

040502 (2004).
[5] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57,

143 (2008).
[6] J. I. Cirac and F. Verstraete, J. Phys. A: Math. Theor.

42, 504004 (2009).
[7] A. Hamma, S. Santra, and P. Zanardi, arXiv:1109.4391.
[8] B. Derrida, M. R. Evans, H. Hakim, and V. Pasquier, J.

Phys. A 26, 1493 (1993).
[9] T. H. Johnson, S. R. Clark, and D. Jaksch, Phys. Rev. E

82, 036702 (2010).
[10] C. Eckart and G. Young, Psychometrika 1, 211 (1936).
[11] K. Temme and F. Verstraete, Phys. Rev. Lett. 104,

210502 (2010).

