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We report on previously unobserved inter-system degeneracies in two-component equal-mass Fermi
gases with interspecies zero-range interactions under isotropic harmonic confinement. Over the
past 10 years, two-component Fermi gases consisting of n1 spin-up and n2 spin-down atoms with
interspecies zero-range interactions have become a paradigm for modeling condensed matter systems,
nuclear matter and neutron matter. We show that the eigen energies of the (n1 + 1, n2 − 1) system
are degenerate with the eigen energies of the (n1, n2) system for any s-wave scattering length as,
including infinitely large, positive and negative as. The existence of the inter-system degeneracies
is demonstrated explicitly for few-body systems with n1 + n2 = 4, 5 and 6. The degeneracies and
associated symmetries are explained within a group theoretical framework.

PACS numbers:

Symmetry is one of the most fundamental concepts in
physics, underlying our understanding of elementary par-
ticle physics, relativity and quantum mechanics, to name
a few [1]. In quantum mechanics, symmetries manifest
themselves in degeneracies of energy eigen values. If a
Hamiltonian is invariant under rotations, for example,
the eigen energies are (2L+ 1)-fold degenerate, where L
denotes the orbital angular momentum quantum num-
ber [2]. Similarly, the fact that the energy spectrum
of the non-relativistic hydrogen atom depends only on
the principal quantum number is intimately related to
conserved quantities associated with the orbital angular
momentum and Runge-Lenz vectors [2].

Dilute atomic two-component Fermi gases with short-
range interspecies s-wave interactions can nowadays be
realized routinely in many cold atom laboratories [3]. In
these experiments, the atoms occupy two different hyper-
fine states that are interpreted as spin-1/2 pseudo states.
Ultracold atomic Fermi gases have emerged as model sys-
tems with which to study condensed matter phenomena
such as the BCS-BEC crossover and nuclear physics phe-
nomena such as the equation of state of superfluid neu-
tron matter [4–6]. A multitude of results have been ob-
tained for two-component equal-mass Fermi gases with s-
wave zero-range (ZR) interactions. A notable milestone
is the derivation of various universal relations by Tan [7–
9], which are centered around the “contact” and now
form the basis for novel spectroscopic techniques [10, 11].
Another notable milestone is the identification of a hid-
den SO(2,1) symmetry of the two-component Fermi gas
with ZR interactions at unitary in an isotropic harmonic
trap by Werner and Castin [12], which manifests itself in
ladders of uniformly spaced excitation frequencies.

Our work identifies another symmetry that manifests
itself in the existence of degenerate eigen energies of two-
component equal-mass Fermi gases with the same num-
ber of particles but different numbers of spin-up and spin-
down atoms, i.e., of (n1, n2) and (n′

1, n
′

2) systems with
n1 + n2 = n′

1 + n′

2. These “inter-system degeneracies”
emerge in the ZR limit for any value of the interspecies

s-wave scattering length and are broken for finite-range
interactions or unequal-mass systems.
Our starting point is the non-relativistic Hamiltonian

H of the two-component Fermi gas with n1 spin-up atoms
and n2 spin-down atoms (n = n1 + n2),

H = H0 + Vint, (1)

where

H0 =

n
∑

j=1

(

−
~
2

2m
∇2

~rj
+

1

2
mω2~r2j

)

(2)

and Vint describes the interactions between the spin-up
and spin-down atoms,

Vint =

n1
∑

j=1

n
∑

k=n1+1

Vtb(rjk). (3)

In Eq. (1), m denotes the atom mass, ω the angular
trapping frequency, and ~rj the position vector of the jth
atom measured with respect to the trap center. Follow-
ing the literature [4], the spin-up and spin-down compo-
nents by themselves are assumed to be non-interacting
(NI). We model the intercomponent atom-atom interac-
tions by a short-range Gaussian potential Vg [13] with
depth V0 and range r0, Vg(rjk) = −V0 exp[−r2/(2r20)],
where rjk = |~rj − ~rk|. For a fixed r0, we adjust the
depth V0 such that Vg reproduces the desired free-space
zero-energy atom-atom s-wave scattering length as. We
restrict ourselves to two-body potentials that support no
two-body s-wave bound state in free-space for negative
as and one two-body s-wave bound state in free-space for
positive as. In the r0 → 0 limit, our interaction model
provides a realization of the ZR δ-function interaction.
In practice, we determine the eigen energies of H for a
sequence of r0 values and then extrapolate the eigen ener-
gies to the r0 → 0 limit. Throughout, we consider ranges
r0 that are much smaller than the harmonic oscillator
length aho, where aho =

√

~/(mω).
We first consider the Hamiltonian H0, which describes

n NI particles under isotropic harmonic confinement. As
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FIG. 1: (Color online) Illustration of the n = 4 systems.
Panels (a) and (b) show the ground state configurations of
the NI trapped (3, 1) and (2, 2) systems. The horizontal solid
lines indicate the single particle harmonic oscillator orbitals
with energy (2n + l + 3/2)~ω; the (n, l) = (0, 0) and (0, 1)
orbitals are respectively one-fold and three-fold degenerate.
Solid lines in panels (c) and (d) illustrate the spin-up—spin-
down interactions of the (3, 1) and (2, 2) systems.

an example, Figs. 1(a) and 1(b) illustrate the ground
state configurations of the (n1, n2) = (3, 1) and (2, 2)
systems. The lowest single particle orbital with energy
3~ω/2 can be occupied by a spin-up atom and a spin-
down atom. To obey the Pauli exclusion principle, the
other spin-up and spin-down atoms need to occupy one of
the three excited state orbitals with energy 5~ω/2. This
simple picture yields a ground state energy of 8~ω for
both the (3, 1) and (2, 2) systems. It can be readily shown
that the ground state of the (3, 1) system has LΠ = 1+

symmetry, where L denotes the orbital angular momen-
tum quantum number and Π the parity; this ground state
is three-fold degenerate due to the rotational invariance
of the Hamiltonian. The ground state of the (2, 2) system
is nine-fold degenerate [14]. Just as the NI ground state
manifolds of the (3, 1) and (2, 2) systems contain degen-
erate energies corresponding to the same LΠ symmetry,
so do the NI excited state manifolds. Moreover, anal-
ogous degeneracies are readily identified for NI systems
with larger n.

In this paper, we are interested in the “inter-system
degeneracies”, i.e., in the fact that the (n1 + 1, n2 − 1)
and (n1, n2) systems support degenerate energies corre-
sponding to the same LΠ symmetry. Specifically, we
analyze what happens to the inter-system degeneracies
when the interactions are turned on. For example, since
the (3, 1) system contains three spin-up—spin-down pairs
while the (2, 2) system contains four [see Figs. 1(c) and
1(d)], it seems natural to expect that the interactions
break the inter-system degeneracies discussed above for
the NI n = 4 systems. As we will show, however, this is
not the case if r0 is taken to zero: For ZR interactions,
the eigen energies of the (3, 1) system form, within our
numerical accuracy, a subset of the eigen energies of the
(2, 2) system. Analogous results are found for systems
with n = 5 and 6.
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FIG. 2: (Color online) Relative extrapolated ZR energies for
the n = 4 systems described by H as a function of aho/as.
Solid and dashed lines show the extrapolated ZR energies of
the energetically lowest-lying and second lowest-lying states of
the (3, 1) system with 1+ symmetry while squares and circles
show those of the (2, 2) system. The energies of the (3, 1)
and (2, 2) systems are indistinguishable on the scale shown.
The inset shows the fractional difference ∆ǫ, ∆ǫ = (Erel

2,2 −

Erel
3,1)/E

rel
3,1, for the energetically lowest-lying state.

To determine the eigen energies of the Hamiltonian H
for finite depth V0 of the Gaussian model potential Vg,
we resort to the stochastic variational approach [13, 15].
We separate the center of mass motion and expand the
relative eigen functions in terms of a basis set with good
orbital angular momentum quantum number L and par-
ity Π [15–17]. The proper permutation symmetry under
the exchange of identical fermions is imposed by applying
an appropriately chosen anti-symmetrization operator to
the basis functions. Our implementation [18] allows for
the treatment of states with all LΠ symmetries. The
stochastic variational approach results in variational up-
per bounds to the exact eigen energies [15].

As an example, Fig. 2 shows the extrapolated ZR en-
ergies for the (3, 1) and (2, 2) systems with 1+ symmetry
as a function of the inverse s-wave scattering length a−1

s .
In this representation, the weakly-attractive BCS regime
(as < 0 and |as|/aho ≪ 1) is realized on the left of the
graph and the repulsive BEC regime (as > 0) on the
right of the graph. Lines show the relative eigen energies
of the (3, 1) system and symbols those of the (2, 2) system
for r0 = 0. The extrapolated ZR energies are estimated
to have a combined basis set and ZR extrapolation error
smaller than 0.001 % for the energetically lowest-lying
state and smaller than 0.01 % for the energetically sec-
ond lowest-lying state. On the scale shown, the eigen
energies of the (3, 1) and (2, 2) systems are, somewhat
surprisingly, indistinguishable for both the lowest and
second lowest states for all scattering lengths considered.
The inset shows that the fractional difference is smaller
than 2×10−4 % for the energetically lowest lying 1+ state
and the scattering lengths considered. Thus, within our
numerical accuracy, the energy curves agree throughout
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FIG. 3: (Color online) Analysis of the extrapolated ZR en-
ergies of the n = 4 systems described by H at unitarity.
Symbols show the fractional difference ∆s, ∆s = (sν,L,Π

2,2 −

sν,L,Π
3,1 )/sν,L,Π

3,1 , between sν,L,Π
2,2 and sν,L,Π

3,1 as a function of Erel
3,1.

∆s is of the order of or smaller than the fractional numerical
uncertainty of the extrapolated ZR energies.

the crossover.

To see if the (3, 1) and (2, 2) energies are also degener-
ate for other symmetries and for higher-lying excitations,
we focus on the infinite scattering length regime. We ana-
lyze the extrapolated ZR energies of the (3, 1) and (2, 2)
systems at unitarity for all states with relative energy
Erel equal to or smaller than 21~ω/2, which were deter-
mined in Ref. [18] with an accuracy of 0.1 % or better.
In this energy window, there exist 164 and 286 eigen en-
ergies for the (3, 1) and (2, 2) systems, respectively [19].
As pointed out by Werner and Castin [12], the existence
of a hidden SO(2,1) symmetry leads to ladders of ener-
gies spaced by 2~ω, i.e., the relative eigen energies at
unitarity can be written as Erel = (sν,L,Π + 2q + 1)~ω,
where q = 0, 1, · · · . The separation constants sν,L,Π

arise when solving the (n1, n2)-fermion problem within
the hyperspherical framework. We find that the rela-
tive eigen energies with Erel ≤ 21~ω/2, corresponding
to (3, 1) and (2, 2) states that are affected by the inter-
actions, are characterized by 89 and 170 sν,L,Π values,
respectively [20]. Quite surprisingly, every sν,L,Π value
of the (3, 1) system, within the numerical accuracy [18],
appears in the sequence of sν,L,Π values of the (2, 2) sys-
tem. Figure 3 shows that the fractional difference be-
tween the sν,L,Π values of the (3, 1) and (2, 2) systems is
of the order of or smaller than the numerical accuracy
of the extrapolated ZR energies. This suggests that the
exact ZR energies of the (3, 1) system at unitarity form
a subset of the exact ZR energies of the (2, 2) system
at unitarity. These findings are corrobated by extensive
perturbative calculations [21].

The calculations presented so far strongly suggest that
the (3, 1) energies are degenerate with a subset of the
(2, 2) energies in the r0 → 0 limit for all as. The sup-
plemental material [21] shows, using the stochastic varia-
tional and perturbative approaches, that analogous inter-
system degeneracies exist for systems with n = 5 and 6.
To interpret our observations, we construct a new Hamil-
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FIG. 4: (Color online) Comparison of the eigen energies of
the Hamiltonian H and H ′ with Gaussian model interactions
as a function of r0/aho at unitarity. Crosses and circles show
the relative eigen energies Erel

n1,n2
of the energetically lowest-

lying state with 1+ symmetry described by H while diamonds
and stars show the relative eigen energies of the energetically
lowest-lying state with 1+ symmetry described by H ′ (on the
scale shown, the diamonds and stars are indistinguishable).
Solid lines show fits to the relative eigen energies of H .

tonian H ′,

H ′ = H0 + V ′

int, (4)

that reproduces the eigen energies of the (n1 +1, n2 − 1)
and (n1, n2) systems described by H when r0 → 0. The
interaction potential V ′

int includes interactions between
all atom pairs and not just between the spin-up and spin-
down pairs,

V ′

int =

n
∑

j<k

Vtb(rjk). (5)

The Hamiltonian H ′ treats all atom pairs on equal foot-
ing. In particular, V ′

int is the same for the (n1+1, n2−1)
and (n1, n2) systems. Intuitively, it is clear that the anti-
symmetry of the eigen functions under the exchange of
like atoms “turns off” the interactions between the like
atoms when r0 → 0, thereby ensuring that the energy
spectra of H and H ′ are identical when r0 → 0. This
behavior is illustrated exemplarily in Fig. 4 for the ener-
getically lowest-lying state of the n = 4 systems with 1+

symmetry interacting through the Gaussian model po-
tential. In the r0 → 0 limit, the eigen energies of H and
H ′ agree for the (2, 2) and (3, 1) systems; moreover, as
already pointed out above, the eigen energies of the (3, 1)
and (2, 2) systems agree. For finite r0, the eigen energies
of the (3, 1) and (2, 2) systems described by H are char-
acterized by different slopes while the eigen energies of
the (3, 1) and (2, 2) systems described by H ′ agree within
our numerical accuracy for all r0.
The key motivation for introducing the Hamiltonian

H ′ is that it describes all n-particle systems with ZR
s-wave interactions, regardless of the particle statistics.
The fact that the (n1 + 1, n2 − 1) and (n1, n2) systems
are described by the same Hamiltonian allows us to tie
the evidenced degeneracy of the eigen energies to the ex-
istence of a symmetry. In particular, according to quan-
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tum mechanics [2], the existence of degenerate eigen ener-
gies of a Hamiltonian is a manifestation of an underlying
symmetry. Since the Hamiltonian H ′ is invariant under
the permutation of any pair of atoms, the inter-system
degeneracies are intimately related to the structure of
the permutation group Sn. Group theoretical tools are
widely used in quantum chemistry and molecular physics
to (anti-)symmetrize the wave functions associated with
the electronic and nuclear degrees of freedom [22]. Here,
they are employed to analyze the properties of the Hamil-
tonian H ′, which has been shown to reproduce the eigen
spectrum of the original Hamiltonian H .
The Hilbert space of the (n1, n2) system is spanned

by the direct product of the Hilbert spaces of the two
single components or, in terms of Young tableaux, [1n1 ]⊗
[1n2 ] [22, 23]. Here, [1n1 ] = [1, 1, · · · , 1] indicates the
fully anti-symmetric tableau of the n1 spin-up fermions.
The direct product can be decomposed into a direct sum
of Young tableaux that consist of at most two columns
(n1 ≥ n2) [24],

[1n1 ]⊗ [1n2 ] = [1n1+n2 ]⊕ [2, 1n1+n2−2]⊕
[

22, 1n1+n2−4
]

⊕ · · · ⊕ [2n2 , 1n1+n2−2n2 ]. (6)

If we replace n1 and n2 in Eq. (6) by n1+1 and n2−1, re-
spectively, and then compare with the decomposition for
the (n1, n2) state space, we find that the decomposition
of the (n1, n2) state space contains the decomposition of
the (n1 + 1, n2 − 1) state space,

[1n1 ]⊗ [1n2 ] =
(

[1n1+1]⊗ [1n2−1]
)

⊕
[

2n2 , 1n1−n2

]

. (7)

This decomposition into irreducible representations
shows explicitly that the decomposition of the (n1 +
1, n2 − 1) system is contained in that of the (n1, n2)
system. Correspondingly, the eigen energies of the
(n1+1, n2−1) system with ZR interactions form a subset
of those of the (n1, n2) system with ZR interactions for
all as. Equation (7) shows, in agreement with our earlier
discussion, that the (n1, n2) system contains additional
eigen energies.
In summary, we have identified and interpreted inter-

system degeneracies of two-component Fermi gases with
ZR interactions under spherically symmetric confine-
ment. The fact that the eigen energies of the n = 4 sys-
tem with spin projection quantum number MS = 1 form
a subset of the eigen energies of the n = 4 system with
MS = 0 (and similarly for n > 4) has multiple implica-
tions. From a computational point of view, the degenera-
cies can be used to test the accuracy of various schemes
employed to solve the n-fermion Schrödinger equation.
Moreover, in certain cases it may be easier to treat the
energetically lowest lying state of a system with larger
MS than an excited state of a system with smaller MS,
allowing one to substitute an excited state calculation by
a ground state calculation for a system of the same size
but with different MS . The inter-system degeneracies

also have experimentally observable implications. Since
the change of the energy with scattering length coincides
for certain eigen states of the (n1−1, n2+1) and (n1, n2)
systems, the corresponding eigen states, which charac-
terize two distinctly different physical systems, have the
same contact [7–9]. Moreover, the two distinctly dif-
ferent systems share a common set of eigen frequencies.
These frequencies can be measured via microwave spec-
troscopy [26].

The discussed inter-system degeneracies do not only
exist for systems with ZR interactions but also for sys-
tems with finite-range interactions such as electronic sys-
tems, provided the Hamiltonian under study is invariant
under permutation of all particle pairs. This also im-
plies that the degeneracies are not limited to harmoni-
cally confined systems but also exist for systems in free
space or under non-harmonic confinement, provided the
Hamiltonian under study is invariant under permutation.
We conclude by noting that our analysis is based on the
assumption that the interaction potential is constructed
from pairwise two-body interactions. The presence of
three-body forces, which are needed to describe non-
universal Efimov states or nuclear systems, introduces
a new degree of freedom not considered here.
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