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Thermal fluctuations of lipid orientation are analyzed to infer the bending rigidity of lipid bilayers directly
from molecular simulations. Compared to the traditional analysis of thermal membrane undulations, the pro-
posed method is reliable down to shorter wavelengths and allows for determination of the bending rigidity using
smaller simulation boxes. The requisite theoretical arguments behind this analysis are presented and verified by
simulations spanning a diverse range of lipid models from the literature.

The mechanics of biomembrane shape are commonly for-
mulated in the Helfrich-Canham picture [1–4], which mod-
els membranes as thin, structureless, and homogeneous fluid
sheets. In the tensionless state, the free energy of such a mem-
brane reads

F =

∫ {

Kc

2
(J − C0)

2
+KGK

}

dS, (1)

whereJ is the local total curvature,K is the local Gaus-
sian curvature and the integral spans the membrane surface
S. The physical constantsKc (bending rigidity),C0 (spon-
taneous curvature) andKG (Gaussian bending rigidity) de-
termine membrane behavior within this picture. For a given
surface topology, the second term is a simple constant [5] and
C0 = 0 for a symmetric bilayer with identical leaflets. This
leavesKc to fully specify membrane behavior and to distin-
guish between chemically distinct membranes for many com-
mon experiments (within the Helfrich-Canham model). The
membrane’s resistance to bending plays an important role in
a number of biological situations, including endocytosis [6],
the organization of membrane trafficking [7], and membrane
fusion [8]. Kc is arguably the single most important quan-
tity in membrane biophysics and considerable effort has been
expended on measuring, predicting and understanding how it
varies across different lipid bilayers [4, 9–18].

Analyzing thermal shape fluctuations of tensionless quasi-
planar membranes in a periodic simulation box [19–21] has
become the standard method for determiningKc from molec-
ular simulations. In this geometry, the Helfrich-Canham sur-
face is conveniently specified by the “height field”h(x, y) =
h(r), which indicates the vertical displacement of the mem-
brane from the minimum energy configurationh(r) = 0.
Eq. 1 may then be written, assuming small deviations from
h(r) = 0, asF = Kc

2

∫

L2(∇
2h)2 dr, orF = Kc

2

∑

q
q4|hq|

2

for h(r) = 1
L

∑

q
hqe

iq·r expressed as a Fourier series. The
equipartition theorem then predicts〈|hq|

2〉 = kBT/Kcq
4; the

value ofKc is inferred by fitting the simulation results for
〈|hq|

2〉 to this expression.
Schemes to extractKc from simulation data by analyzing

membrane response to applied forces have also been proposed
[22–24]. These methods are interesting from theoretical and
conceptual perspectives and have helped to demonstrate the
validity of Eq. 1 over a range of geometries, but are not widely

used as practical tools to extractKc from simulations. The
overwhelming popularity of the shape fluctuation approach
follows from the straightforward nature of both the required
simulations and subsequent analysis, as well as the generality
of the approach to a diverse range of membrane models span-
ning coarse-grained to fully atomic representations. The other
schemes are more complicated to implement and/or may be
well suited only for simplified lipid representations.

Despite widespread use of the shape fluctuation methodol-
ogy, the approach is open to criticism. The underlying the-
ory (Eq. 1) presumes that the membrane is a thin sheet de-
void of any internal structure. While this assumption holds
for fluid bilayers over sufficiently long wavelengths, it neces-
sarily breaks down at length scales comparable to the bilayer
thickness. Due to computational constraints, simulationsof-
ten involve a membrane patch that is only on the order of
ten times larger in lateral dimension than the membranes is
thick. It is not obvious that Eq. 1 should hold at these length
scales; indeed, the prediction〈|hq|

2〉 = kBT/Kcq
4 is seldom

a perfect fit to the simulation data, even at the longest wave-
lengths allowed by the box (e.g. see Fig. 5). This imperfect
correspondence between theory and experiment at observable
wavelengths is, at least partially, to blame for the disparity of
reported values ofKc for identical simulation models [21, 25–
29]. Recent theories [27, 30, 31], which include the influence
of lipid tilt on bilayer shape [32, 33], have provided improved
predictions for〈|hq|

2〉 over simulated length scales, but we
argue that the focus on〈|hq|

2〉 is primarily motivated by his-
tory and may be somewhat misguided. A more lucid physical
picture, simpler theoretical expressions and streamlineddata
analysis are suggested by concentrating interest on fluctua-
tions in lipid orientation.

In this letter, we demonstrate thatKc can be measured
by directly analyzing thermal fluctuations in lipid orientation.
This approach is similar to methods that have been applied to
determine Frank elastic constants in the liquid crystal litera-
ture (see [34] and references therein). The method relies on
identical simulations and similar analyses as employed in the
shape fluctuation approach, but has the advantage that theory
and simulation show good agreement down to shorter wave-
lengths. This makes it possible to determineKc for detailed
lipid models more accurately than was previously possible.
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Existing simulation data may be re-analyzed to obtain better
estimates ofKc without the need to perform new simulations.
Insofar asKc provides a key physical observable to compare
theory, experiment and simulation in membrane biophysics,
this represents an important practical step forward in our un-
derstanding of these systems. In addition toKc, the technique
provides a straightforward method for measuring the lipid tilt
modulusKθ and twist modulusKtw, which govern meso-
scopic aspects of bilayer structure.

Our theoretical approach is based on a reformulation of the
model described in Ref. [27], by changing basis within the
theory to replace the bilayer height field with the longitudinal
component of the vector field associated with lipid orientation.
Those aspects of the original theory needed to motivate this
reformulation are summarized here. We refer readers to Ref.
[27] for a detailed explanation and derivation of the model
itself. Here we focus only on the smooth “macroscopic” con-
tributions to bilayer energetics and ignore microscopic “pro-
trusions.” Our intent is to provide a practical scheme to extract
Kc from simulation data and we demonstrate that the macro-
scopic model alone is sufficient to accomplish this. Readers
interested in the protrusion regime are referred to Ref. [27].

The geometric setup of the model is illustrated in Fig. 1,
adopting the notation of Ref. [27]. The superscriptα = {1, 2}
refers to the top and bottom leaflets, respectively. The fontn

denotes a 3D vector, whilen denotes itsxy components. The
vectorr refers toxy position. We denote the exact bilayer
height field ash(r), while z+(r) denotes the smooth macro-
scopic continuum field used to approximateh in the absence
of protrusions. From the definitions described in Fig. 1, it
is convenient to use the quantitiesn̂ ≡ 1

2 [n
(1) − n(2)] and

m̂ ≡ 1
2 [m

(1) − m(2)] to describe the collective molecular
orientation and tilt of the bilayer, respectively.

The bilayer free energy decouples into independent peri-
staltic modes, which correspond to perturbations in bilayer
thickness, and undulation modes, which are associated with
overall membrane shape. In this letter, we are only concerned
with undulations. For vanishing surface tension and fixed
topology, the free energy associated with undulations is (see
Eqs. 18 and 20 of Ref. [27])

Fu =
1

2

∫

(

Kb
c

(

∇2z+ +∇ · m̂
)2

−
Ω̃

b0
ε
(

∇2z+ +∇ · m̂
)

+
KA

b20
ε2 +Kθm̂

2 +Ktw(∇× m̂)2
)

dr, (2)

whereε ≡ z(m) − z+ andb0 is the mean monolayer thick-
ness. The elastic moduli in Eq. 2:Kb

c (bending modulus for
constant monolayer thickness deformations),KA (compress-
ibility modulus),Kθ (tilt modulus),Ktw (twist modulus) and
Ω̃ (bending/compression coupling) represent bilayer quanti-
ties and are twice the corresponding monolayer quantities in-
troduced in Ref. [27] (e.g.KA = 2kA, etc.).

Due to coupling betweenz+, ε and m̂, Kb
c is not the

quantity associated with bilayer bending in the usual sense.

z
(1)

z
(2) z

(m)

z
+

FIG. 1. For each leaflet,z(α) represents the smooth (protrusionless)
surface running though the hydrocarbon water surfaces.z(m) is the
smooth surface which separates the top and bottom leaflets, so that
the top monolayer is bounded byz(1) andz(m), while the bottom
monolayer is bounded byz(m) andz(2). The coarse grained shape
of the membrane averaged over the top and bottom monolayers is
given by z+ ≡ 1

2
[z(1) + z(2)]. The unit vectorsN (α) are nor-

mal to z(α) and point toward the interior of the bilayer. Assuming
the membrane is nearly flat, the normals may be approximated as
N

(α) = (−1)α [−∇z(α), 1]. Molecular orientation of the lipids is
described by the unit vector fieldn(α), which points fromz(α) to
z(m) along a vector connecting the two ends of the lipid hydrocar-
bon chain(s). Thexy components of the dashed vectors denote the
tilt vectorm(α) = n

(α) −N
(α).

Kc = Kb
c − Ω̃2/8KA has all the properties usually asso-

ciated with the bilayer bending modulus [27]. In particular,
〈|z+

q
|2〉 = kBT/Kcq

4 asymptotically asq → 0 for this model
[27]. In this regime, the details of internal structure within the
bilayer are unimportant and membrane shape behaves as pre-
dicted by the Helfrich-Canham picture. However, the general
prediction following from Eq. 2 is [27]

〈|z+
q
|2〉 = kBT

(

1

Kcq4
+

1

Kθq2

)

. (3)

The second term reflects energetic coupling between shape
and tilt (see Fig. 2), and is an important contribution to
〈|z+

q
|2〉 on length scales comparable to and somewhat larger

than the bilayer thickness [30, 31] (see Fig. 5). (An additive
q−2 contribution to the traditional height spectrum was origi-
nally proposed in Ref. [19], and was attributed to microscopic
protrusions. Simultaneous analysis of membrane shape and
lipid tilting in molecular simulations indicates thatq−2 scal-
ing at short wavelengths is primarily attributable to lipidtilt
[27, 30].)

Equation 2 simplifies by recognizing thatn̂ = ∇z+ + m̂,
so that the free energy may be re-written as:

Fu =
1

2

∫

(

Kb
c (∇ · n̂)2 −

Ω̃

b0
ε∇ · n̂+

KA

b20
ε2 (4)

+Kθm̂
2 +Ktw(∇× m̂)2

)

dr.

This change amounts to a simple linear transformation to ex-
press the energy in a form that is almost diagonal and dis-
plays similarity to the Frank theory of nematic liquid crystals
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FIG. 2. Two modes of membrane bending (each box represents a
lipid andε = 0 for simplicity). Top: Membrane bending associated
with splay in lipid orientation(∇ · n̂), in the absence of any lipid
tilting (m̂). Bottom: Membrane bending associated with lipid tilt, in
the absence of splay. The top mode represents the dominant contri-
bution to bending at long wavelengths and the source ofq−4 scaling
in 〈|hq|

2〉. The bottom mode involves an increase in the average
area/lipid exposed to solvent and is associated with aq−2 scaling
characteristic shape fluctuations damped by surface tension.

[32, 33, 35], at the expense of losing explicit reference to the
shape fieldz+ familiar from Helfrich-Canham theory. The
two representations (Eqs. 2 and 4) are completely equivalent
within the quadratic order expansion in small quantities im-
plicit in the theoretical treatment.

Thermal fluctuation spectra are calculated from Eq. 4 as
follows. For a box with periodic boundary conditions and area
L2, we adopt the Fourier representation discussed earlier. The
values of the wave numberq are given byq = 2π(n,m)/L
for the integersn,m = {−M

2 , . . . , 0, . . . , M
2 − 1}, whereM

is dictated by a short wavelength cutoff.n̂q may be written in

terms of longitudinal and transverse componentsn̂
‖
q = 1

q
[q ·

n̂q] andn̂⊥
q
= 1

q
[q × n̂q] · ẑ, and similarly form̂. In Fourier

space, the energy readsFu = 1
2

∑

q
f̃u(−q) ⊗ C ⊗ f̃Tu (q)

wheref̃u(q) = [n̂
‖
q, εq, m̂

‖
q, m̂⊥

q
] and

C =








Kb
cq

2 iqΩ̃/b0 0 0

−iqΩ̃/b0 KA/b
2
0 0 0

0 0 Kθ 0
0 0 0 Kθ +Ktwq

2









.

From the equipartition theorem [3], thermal fluctuations in
lipid orientation follow immediately:

〈|n̂‖
q
|2〉 =

kBT

Kcq2
, 〈|n̂⊥

q
|2〉 =

kBT

Kθ +Ktwq2
. (5)

The first of these equations represents the primary result of
this letter, establishing a foundation for determination of Kc

directly from fluctuations in the longitudinal component of
lipid orientation. The second equation follows from the fact
thatn̂⊥

q
= m̂⊥

q
sincen̂ = ∇z+ + m̂. From Eq. 5, the tilt and

twist moduli{Kθ,Ktw} may be extracted from the transverse
orientation fluctuations.

The theoretical predictions were compared against three
very different molecular simulations: an aggressively coarse-
grained implicit solvent system (CG) [36], the MARTINI

model for DPPC[28, 37], and a united atom (UA) force field
for DMPC[38]. Trajectories from previously reported simula-
tions [25, 27] were used in the analysis. We are unaware of the
quantities〈|n̂‖

q|2〉 and〈|n̂⊥
q
|2〉 previously being measured in

simulations, but closely related tilt fluctuations have been re-
ported [27, 30, 31]. Appendix C of Ref. [27] details the anal-
ysis of molecular simulation trajectories to obtain tilt, height
and related fluctuation spectra. This procedure was adaptedto
measure orientation spectra, simply by considering the molec-
ular orientation vectors directly, without subtracting off the
local shape gradients

(

∇z(α)
)

needed in the definition of tilt.
The only ambiguity in the process lies in defining the orien-
tation for individual lipids. (Where do you place the vector
head and tail relative to the atoms/sites in the molecule?).The
data presented in Figs. 3–5 assume the following definitions:
for the UA model, the molecular orientation of each lipid (i.e.
n
(α) for that lipid) points from the phosphate atom to the mid-

point between the last carbons of the two hydrocarbon chains,
for the implicit solvent system and MARTINI model, the vec-
tor points from the interfacial beads to the last tail beads of the
chains (see Fig. 7 of Ref. [27]).

In order to extractKc, the raw data for〈|n̂‖
q|2〉 is multi-

pled byq2 (Fig. 3). As predicted by Eq. 5, this scaled data
is constant until microscopic fluctuations (e.g. protrusions)
become prominent at short wavelengths. The values ofKc

were obtained by taking the average of the data points over
wavelengths greater than twice the bilayer thickness, yielding
Kc = {36, 15, 15}×10−20 J for the CG , MARTINI and UA
models, respectively. The first two values agree with previ-
ous measurements [27, 29].Kc obtained for the UA DMPC
model is twice as large as a recently reported value [25] based
on exactly the same simulation run as this paper. The dispar-
ity is due to a subtle difference [39] associated with the “direct
Fourier” analysis method proposed and employed to analyze
the simulation in Ref. [25]. (The experimentally measured

1

0

0.2

2

CG

MARTINI DPPC

UA DMPC

1020

FIG. 3. The spectrum of longitudinal molecular orientationfluctu-
ations〈|n̂‖

q|
2〉 multipled by q2. Simulation data are shown for an

implicit solvent model (CG)(♦), the MARTINI model for DPPC
(�) and a united-atom force field for DMPC(©). Open symbols
denote wavelengths greater than twice the bilayer thickness, used in
determination ofKc. For clarity, the data sets for MARTINI and CG
were vertically shifted by 0.1 and 0.2, respectively.
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MARTINI DPPC

1020 5

FIG. 4. The transverse orientation spectrum〈|n̂⊥
q |2〉 (see Fig. 3

for details). In contrast to〈|n̂‖
q|

2〉, the theory (solid lines) and sim-
ulation data agree down to wavelengths of a few nanometers (Eq.
5). While different definitions of the molecular orientation lead to
quantitative changes in the〈|n̂⊥

q |2〉 data for MARTINI and UA, the
resulting spectra (not shown) retain excellent agreement with Eq. 5.

value ofKc for DMPC ranges from 15×10−20J[18, 40] to
roughly half that number[10, 41].) The analysis was repeated
using different definitions for the molecular orientation vector,
as suggested in Refs. [30, 31] (data not shown). The extracted
values ofKc changed by 5% or less. This degree of influ-
ence onKc is similar to that found by changing the molecular
definition ofz(α) in the traditional shape analysis.

The tilt and twist moduli{Kθ, Ktw} were obtained by fit-
ting the transverse fluctuations to Eq. 5 over all values ofq.
The results are shown in Fig. 4. The fitted values areKθ =
{5.2, 11, 5.6} × 10−20 J

nm2 andKtw = {2.2, 1.5, 2.4} ×
10−20J for the CG, MARTINI and UA models, respectively.
Unlike Kc, the values of{Kθ,Ktw} are more sensitive to
the molecular definition of orientation [30, 31]. We find
Kθ = 9 × 10−20 J

nm2 for the MARTINI model when choos-
ing the midpoints of all head beads and tail beads to repre-
sent the start- and endpoints ofn

(α), respectively. For UA,
Kθ = 3.6 × 10−20 J

nm2 when drawingn(α) from the carbon
joining the two chains to the midpoint of the carbons at the
end of each chain (data not shown).

For purposes of comparison, we plot〈|hq|
2〉q4 for the same

three simulations in Fig. 5. If the traditional Helfrich-Canham
prediction held, we could extract the bending modulus as
Kc = kBT/

[

〈|hq|
2〉q4

]

in the regime where the denomina-
tor is constant. This regime is, at best, confined to the longest
two wavelength modes for both the CG and MARTINI data;
it is not present at all for the UA model. It is difficult to see
how one could be confident with aKc value extracted in this
manner, for any of these simulations. An improved analysis
to obtainKc from the height field is possible, but requires use
of Eq. 3 and knowledge ofKθ (see Fig. 5). Using the values
of Kθ determined from the transverse orientation fluctuations
in Fig. 4, we findKc = {37, 14, 11} × 10−20 J for the CG,
MARTINI, and UA models. However, repeating the analy-
sis with the alternate orientation definitions discussed above
leads toKc = {13, 16} × 10−20 J for the MARTINI and UA

1

0

0.2

2

CG

MARTINI DPPC

UA DMPC

1020

FIG. 5. The spectrum of height fluctuations〈|hq|
2〉 multiplied byq4

for the same simulations as in Fig. 3. The gray symbols represent
“correcting” these results, as suggested by Eq. 3, to account for lipid
tilt: [〈|hq|

2〉− kBT

Kθq
2 ]q

4. For clarity, the MARTINI and CG data sets
were vertically shifted by 0.1 and 0.2, respectively.

models. Unfortunately, the sensitivity ofKθ to the molecular
definition of orientation propagates to uncertainty inKc when
using this approach. No such uncertainly exists for the anal-
ysis based on the longitudinal orientation fluctuations. The
need to introduceKθ to solve forKc is a considerable dis-
advantage. Fig. 5 is intended to demonstrate the consistency
of the underlying theoretical treatment and to highlight short-
comings of the traditional approach, not to suggest determina-
tion ofKc via height fluctuations.

The primary message of this letter may be seen in the con-
trast between Figs. 3 and 5. If the Helfrich-Canham the-
ory were sufficient to describe membrane mechanics over the
scales probed in molecular simulations, both figures would
exhibit a significant plateau regime at low wavenumbers. In
practice, such behavior is observed only in Fig. 3, indicat-
ing the influence of lipid tilting on the height spectrum. Lipid
splay (∇ · n̂) is the only microscopic deformation responsi-
ble for macroscopic bending as tilting is relatively unfavor-
able over long wavelengths (Fig. 2). Splay is associated with
the longitudinal component of the lipid orientation field and
Eq. 5 provides a simple means to extractKc from molecular
simulations based on this fact. As a practical matter, the pro-
posed method for measuringKc can be applied to simulations
smaller than the ones used here and smaller than is needed
to determineKc based on the popular shape fluctuation ap-
proach. For the united atom simulation, a minimum wave
number of about0.6 nm−1 could have been used to safely
measure the bending modulus (Figs. 3 and5). Based on the
area per molecule of0.6 nm2, a system consisting of∼ 400
lipids would be sufficient. This suggests that it may be possi-
ble to accurately and routinely determineKc for various lipid
systems, even fully-atomic models. Due to its straightforward
measurement, the orientation spectra should join the list of
standard quantities used to characterize lipid simulations.
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