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Quantum disordered phase near the Mott transition in the staggered-flux

Hubbard model on a square lattice

Chia-Chen Chang and Richard T. Scalettar
Department of Physics, University of California, Davis, 95616

We investigate ground state properties of the half-filled staggered-flux Hubbard model on a square
lattice. Energy gaps to charge and spin excitations and magnetic as well as dimer orders are
calculated as a function of interaction strength U/t by means of constrained-path quantum Monte
Carlo method. It is found that the system is a semi-metal at U/t . 5.6 and a Mott insulator with
long-range antiferromagnetic order at U/t & 6.6. In the range 5.6 . U/t . 6.6, the ground state
is an correlated insulator where both magnetic and dimer orders are absent. Furthermore, spin
excitation in the intermediate phase appears to be gapless, and the measured spin-spin correlation
function exhibits power-law decaying behavior. The data suggest that the non-magnetic ground
state is a possible candidate for the putative algebraic spin liquid.

PACS numbers: 71.10.Fd,02.70.Ss

At sufficiently low temperatures, condensed matter
systems have a tendency to undergo phase transitions
and develop long range order which reflects broken
symmetry[1]. In a two-dimensional antiferromagnet,
however, Anderson recognized that the system could have
a ground state that avoids all spontaneous symmetry-
breaking and does not have magnetic order even at zero
temperature[2]. Anderson’s discovery, in conjunction
with many subsequent theoretical investigations, uncov-
ered a new class of matter, named spin liquids, that go
beyond Landau’s paradigm. Most notably, in contrast
to conventional symmetry-breaking, spin liquids possess
topological orders that cannot be characterized by local
order parameters and carry fractionalized excitations[3].
Model Hamiltonians have played an important role in

realizing such exotic spin liquid states[4, 5]. Evidence
of spin liquid phases has been found in the spin 1/2
Heisenberg model on triangular lattices[6], square lat-
tices with frustration[7–9], and kagome lattices[10]. In
these geometrically frustrated systems[11], antiferromag-
netic (AF) orders are suppressed by strong quantum
fluctuations. In addition to spin systems, there is also
progress using the Hubbard model which contains spin
and charge degrees of freedom. Spin liquid ground states
have been identified in the model on anisotropic triangu-
lar lattices[12] and on bipartite honeycomb lattices[13].
In this paper, we examine ground state properties of

the half-filled staggered-flux Hubbard model (sfHM) on a
square lattice. As will be seen later, low energy physics in
the sfHM is described by Dirac fermions, similar to that
found in the Hubbard model on honeycomb lattices[13].
The model is defined by the Hamiltonian

H = −
∑

〈ij〉,σ

(tijc
†
iσcjσ + tjic

†
jσciσ)

+U
∑

i

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

, (1)

where tij = t eiθij is the nearest-neighbor hopping and we
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FIG. 1. (Color online) (a) Arrangement of hopping ampli-
tudes on a square lattice. The phase Φ = π is distributed
equally so that t1 = t2 = t3 = t4 = eiΦ/4. (b) Band
structure of the tight-binding Hamiltonian. (c) Top panel:
power law exponent η extracted from fits to staggered spin-
spin correlation functions. Bottom panel: thermodynamic
limit charge gap ∆C and magnetic moment m2 (see text for
definition). The shaded region indicates the non-magnetic
insulating phase.

set t = 1 throughout this work. The operator ciσ (ciσ)
creates (annihilates) an electron with spin σ =↑, ↓ at site
i on a lattice of size N = L × L. U > 0 is the onsite
Coulomb repulsion. We work in the canonical ensemble.

An electron gains a phase Φ =
∑

�
θij when it hops

around a plaquette of the square lattice. Φ = 0 cor-
responds to the original Hubbard model. We focus on
the case Φ = π in the present study. There is a gauge



2

freedom in choosing θij. Here we distribute the phase
Φ equally over all bonds around a plaquette and ar-
range the hoppings according to Fig. 1(a). This leads
to a lattice with plaquettes threaded alternatively by
flux Φ and −Φ. At U = 0, the energy spectrum is
ǫk = ±2

√

cos2 kx + cos2 ky. The two energy bands meet
at the Fermi surface ǫk = 0 located at nodal points
k0 = (±π/2,±π/2), as shown in Fig. 1(b). Close to
the four nodal points the energy depends linearly on k,
which is similar to the massless Dirac spectrum found on
the honeycomb lattice.

Our key result is that an intermediate non-magnetic
insulating ground state is identified between the semi-
metal phase at weak interaction strengths and the AF
Mott insulator at strong couplings where the hopping
terms become irrelevant. The calculated dimer correla-
tion function shows that columnar valence bond order is
also absent in the intermediate phase. These results seem
to indicate that the non-magnetic insulating phase is a
candidate for the putative algebraic spin liquid ground
state. Therefore, our work suggests recent progress in
optical lattice experiments[14] might provide a promis-
ing way of simulating the model.

The sfHM is solved numerically by means of the
constrained-path quantum Monte Carlo method[15]. De-
tails of the method are described in the supplemental
materials. We begin with the results for the charge exci-
tation gap. In the canonical ensemble, the charge gap at
half-filling can be defined as[16]

∆C(L) =
1

2

[

Eg

(

N

2
− 1,

N

2
− 1

)

− Eg

(

N

2
,
N

2

)]

,

(2)
which is the energy cost of removing a pair of electrons
from the half-filled ground state while keeping the system
in the Sz

tot = 0 sector. We measure ∆C(L) as a function
of interaction strength U on lattices with linear dimen-
sion up to L = 14. As shown in the inset of Fig. 2(a), the
charge gap increases with U on finite lattices. To pin-
point the critical interaction strength where the system
turns into an insulator, we extrapolate ∆C(L) at fixed
U to the thermodynamic limit L → ∞ using the ansatz:
∆C(L)/L

2 = ∆C(∞) + f(L), where f(L) is a polyno-
mial in L−1 that satisfies f(L → ∞) → 0. In a gapped

or ordered phase, f(L) is typically a linear function of
L−1[16]. However, to take into account both gapped and
gapless cases, we choose f(L) to be a second order poly-
nomial in L−1. This functional form is also implemented
in previous works, most recently: Ref. 8, 9, and 13. The
results, shown in the inset of Fig. 2(a), indicate that the
system is gapped for U & 5.6.

In addition to the charge excitation gap, AF long-range
order is another essential feature characterizing a Mott
insulator. To investigate whether there is any AF order
in the ground state, we calculate the spin structure factor
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FIG. 2. (Color online) (a) Extrapolation of the charge gap
∆C(L). Solid lines represent second-order polynomial fits to
the QMC data. Inset shows the charge gap ∆C(L) as a func-
tion of U obtained for L = 4, 6, 8, 10, 12, 14, and extrapolated
(empty circle) values. Lines are guides to the eyes. (b) Finite
size extrapolation of the spin structure factor m2(L). Solid
lines are second-order polynomial fits to the QMC data. In-
set: m2(L) versus U on finite lattices and extrapolated (empty
circle) values. Lines are guide to the eyes.

at the Néel wave vector qAF = (π, π)

S(qAF , L) =
∑

r

eiqAF ·r 〈Sx
r S

x
0 + Sy

rS
y
0 + Sz

rS
z
0 〉, (3)

where Sδ
r is the spin operator along the δ-direction (δ =

x, y, z), and 〈Sδ
rS

δ
0〉 is the equal-time spin-spin correla-

tion function. Defining m2(L) = S(qAF , L)/L
2, a mag-

netically ordered phase is singled by a finite m2(L) in the
thermodynamic limit. The inset of Fig. 2(b) shows the
results of m2(L) as a function of U on finite lattices. In
order to take both magnetically ordered and disordered
phases into account, we use second-order polynomials in
L−1[17] to fit the QMC data and extract the value of
m2(L) in the L → ∞ limit. It can be seen from the inset
of Fig. 2(b) that AF order kicks in at U & 6.6, below
which the system is in a paramagnetic phase.
Our analysis of charge gap and magnetic order above
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FIG. 3. (Color online) (a) Finite size extrapolation of the
spin gap ∆S(L). Solid lines are second-order polynomial fits
to the Monte Carlo data. The inset illustrates ∆S(L) and its
extrapolated value. Lines are guide to the eyes. (b) Long-
range behavior of the staggered spin-spin correlation function
C(r) = (−1)r〈Sx

r
Sx
0 + Sy

r
Sy
0
+ Sz

r
Sz
0 〉 obtained on L = 16,

20, and 24 (U = 0 only). Straight lines are representative
power-law fits to the data: Green (dot-dashed) line: L = 24
at U = 0, black (dashed) line: L = 20 at U = 4, and blue
(solid) line: L = 20 at U = 6.

suggests that the ground state of the sfHM is a semi-
metal at U . 5.6, and becomes a Mott insulator with
long-range AF order at U & 6.6. Therefore, unlike the
original half-filled Hubbard model, owing to the perfect
nesting on a square lattice, has AF order at arbitrar-
ily small U [18], the sfHM has a finite Mott transition
point. A similar finite-U Mott transition was reported
in the square lattice Hubbard mode with uniform π-
flux[19]. Moreover, our results indicate that in the re-
gion 5.6 . U . 6.6 there is an intermediate phase that
is neither a semi-metal nor a Mott insulator.

The absence of AF order in the intermediate phase in-
dicates that the ground state is dominated by short-range
spin correlations. At large distances, the spin correla-
tion function could either decay exponentially or follow a
power-law. To study the nature of the non-magnetic in-
sulating phase, we first calculate the spin excitation gap.

Following Ref. [20], we write the spin gap at half-filling
as

∆S(L) = Eg

(

N

2
+ 1,

N

2
− 1

)

− Eg

(

N

2
,
N

2

)

, (4)

which measures the energy cost of flipping an electron
from spin-down to spin-up. Based on confinement argu-
ments, a gapped spin excitation implies a finite corre-
lation length, leading to an exponentially decaying spin-
spin correlation. On the other hand, the correlation func-
tion would be described by a power-law if the spin excita-
tion is gapless. We compute ∆S(L) as a function of U on
finite lattices. The spin gap results are shown in the inset
of Fig. 3(a) for 5 ≤ U ≤ 7. The data at a given U is then
extrapolated to L → ∞ using a second-order polynomial
in L−1 to extract the spin gap in the thermodynamic
limit. Typical behavior of the fits is plotted in Fig. 3(a).
As expected, the extrapolated spin gap remains zero in
the gapless semi-metal phase (U . 5.6) and in the Mott
phase (U & 6.6) due to the presence of gapless spin wave
excitations. More importantly, ∆S(L) also shows gapless
behavior in the region 5.6 . U . 6.6, implying that the
spin-spin correlation should follow a power-law at large
distances.
To support this observation, we plot in Fig. 3(b) the

staggered spin-spin correlation function along the x-axis.
It appears that C(r) indeed decays algebraically at large
separations. Moreover, the correlation function decays
more slowly with increasing U , and starts showing sat-
uration in the Mott phase U & 6.6. In order to quan-
tify the long-range behavior of C(r), we fit the staggered
spin correlation function to a power law α|r|η for |r| ≥ 2,
where α and η are two fitting parameters. At U = 0, it is
known that C(r) decays as |r|−4[21]. This is also demon-
strated in Fig. 3(b): the fitted exponent of C(r) for free
fermions on a half-filled 24× 24 is η = −3.95± 0.13. The
exponent η as a function of U extracted from several half-
filled lattices is plotted in the top panel of Fig. 1(c). It
can be seen from the figure that η immediately increases
with U from its non-interacting value due to the effect
of interaction. Although the data is quite scattered, the
figure suggests that the exponent η increases slowly with
U in the region 5.6 . U . 6.6.
Next we consider other order parameters proposed in

Ref. [21]. The simplest scenario is the columnar valence
bond solid (VBS) which breaks translational symmetry.
The VBS order can be probed by measuring the dimer
structure factor

Dδδ(q, L) =
1

N

∑

r

eiq·r Cz
δδ(r), (5)

where Cz
δδ(r) is the z-component equal-time dimer-

dimer correlation function for singlet bonds along the
δ-direction (δ = x, y)

Cz
δδ(r) = 〈Sz

r+δ̂
Sz
rS

z

δ̂
Sz
0 〉 − 〈Sz

δ̂
Sz
0 〉

2. (6)
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FIG. 4. (Color online) Thermodynamic limit extrapolation
of the columnar VBS order In both figures, solid lines are
three representative third-order polynomial fits to the Monte
Carlo data. Insets shows the normalized dimer structure for
single bonds in x or y directions on finite size lattices. Lines
are guide to the eyes. The extrapolated value in the thermo-
dynamic limit is indicated by orange (empty) circles in the
insets.

In the columnar VBS state, dimers line up coherently.
Therefore Dδδ(q, L) would pick up a characteristic mo-
mentum at kxx = (π, 0) or kyy = (0, π) for δ = x or
y depending on the orientation of the bonds. Indeed
Dδδ(q, L) peaks at kδδ in our finite size simulations, as
shown in the supplemental materials. To extract the
VBS order in the thermodynamic limit, we calculate
d2δδ(L) = Dδδ(kδδ)/N and extrapolate to the L → ∞
limit. As shown in Fig. 4(a) and (b), both quantities
vanish in the thermodynamic limit, implying the absence
of columnar VBS order in the intermediate phase.

In addition to the columnar VBS state, another com-
peting order proposed in Ref. [21] is the plaquette VBS
order. This state is a coherent superposition of singlets
formed by 4 spins located on corners of a plaquette.
Given the lattice sizes studied in this work, however, we
are not able to obtain a reliable thermodynamic estima-
tion of the plaquette VBS order as a function of U .

A commonly adopted definition of a spin liquid is that
it is a non-magnetic Mott insulator in which neither spin
nor lattice symmetry is broken. Based on this definition,
our numerical data presented in this work seems to sug-
gest an algebraic spin liquid ground state in the half-filled
sfHM[22]. However, the most unambiguous evidence of
a spin liquid is its fractionalized excitation[23]. Due to
the nature of our method, we are not able to directly
measure quantum properties of excited states. As we
have mentioned previously, it is possible to simulate the
sfHM with optical lattice experiment setups[14]. In such
experiments, a direct method of detecting a spin liquid
would be measuring the entanglement entropy (EE)[24].
Although EE does not correspond to any physical ob-
servables, it has been proposed that EE can be measured
using quantum quenches[25].

In terms of the method, we note that although the half-
filled staggered-flux model does not have the fermion sign
problem, we deliberately keep the constrained-path ap-
proximation and calculate the ground state properties at
half-filling. Our benchmark data shows that the error ap-
pears to be small when compared with exact answers, as
shown by the benchmark data in supplemental materials.
However, it is possible that the systematic error grows
with L. A recent exact QMC method, linearized auxil-
iary fields Monte Carlo technique, reports that the half-
filled ground state energy at U = 4 is is −0.85996(5)[26]
per site in the thermodynamic limit. Our method, af-
ter boundary condition averaging, gives −0.8559(4)[27],
corresponding to a 0.47% error. By including this sys-
tematic error, we estimate that the lower critical point
where charge gap opens would be pushed to U ∼ 5.4±0.1.
In observable results such as correlation functions, exten-
sive tests[15, 28] show that our systematic error is small
even at half-filling[28] and does not affect the physics of
the numerical solutions.

To summarize, we have studied ground state proper-
ties in the half-filled staggered-flux Hubbard model on
a square lattice. Charge and spin excitation gaps as
well as spin and dimer orders are extracted by means
of the constrained-path quantum Monte Carlo method.
The system is found to be a semi-metal at U . 5.6
and an AF Mott insulator at U & 6.6. In the region
5.6 . U . 6.6, our data suggests that both AF and VBS
orders are absent in the ground state. Spin excitation in
this region is gapless, a result that is consistent with the
calculated staggered spin-spin correlation function which
shows power-law decaying behavior at large distances.
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